Skip to main content
Log in

Weak and strong laws of large numbers for arrays of rowwise END random variables and their applications

  • Published:
Metrika Aims and scope Submit manuscript

Abstract

In the paper, the Marcinkiewicz–Zygmund type moment inequality for extended negatively dependent (END, in short) random variables is established. Under some suitable conditions of uniform integrability, the \(L_r\) convergence, weak law of large numbers and strong law of large numbers for usual normed sums and weighted sums of arrays of rowwise END random variables are investigated by using the Marcinkiewicz–Zygmund type moment inequality. In addition, some applications of the \(L_r\) convergence, weak and strong laws of large numbers to nonparametric regression models based on END errors are provided. The results obtained in the paper generalize or improve some corresponding ones for negatively associated random variables and negatively orthant dependent random variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asadian N, Fakoor V, Bozorgnia A (2006) Rosenthal’s type inequalities for negatively orthant dependent random variables. J Iran Stat Soc 5:69–75

    MATH  Google Scholar 

  • Bahr BV, Esseen CG (1965) Inequalities for the \(r\)-th absolute moment of a sum of random variables, \(1\le r \le 2\). Ann Math Stat 36:299–303

    Article  MATH  Google Scholar 

  • Bryc W, Smolenski W (1993) Moment conditions for almost sure convergence of weakly correlated random variables. Proc Am Math Soc 119:629–635

    Article  MATH  MathSciNet  Google Scholar 

  • Chatterji SD (1969) An \(L_p\)-convergence theorem. Ann Math Stat 40:1068–1070

    Article  MATH  Google Scholar 

  • Chen Y, Chen A, Ng KW (2010) The strong law of large numbers for extend negatively dependent random variables. J Appl Probab 47:908–922

    Article  MATH  MathSciNet  Google Scholar 

  • Chen PY, Bai P, Sung SH (2014) The von Bahr-Esseen moment inequality for pairwise independent random variables and applications. J Math Anal Appl 419:1290–1302

    Article  MATH  MathSciNet  Google Scholar 

  • Chen ZY, Wang HB, Wang XJ (2016) The consistency for the estimator of nonparametric regression model based on martingale difference errors. Stat Papers 57(2):451–469

    Article  MATH  MathSciNet  Google Scholar 

  • Cheng FY, Li N (2014) Asymptotics for the tail probability of random sums with a heavy-tailed random number and extended negatively dependent summands. Chin Ann Math Ser B 35(1):69–78

    Article  MATH  MathSciNet  Google Scholar 

  • Christofides TC, Vaggelatou E (2004) A connection between supermodular ordering and positive/negative association. J Multivar Anal 88:138–151

    Article  MATH  MathSciNet  Google Scholar 

  • Fan Y (1990) Consistent nonparametric multiple regression for dependent heterogeneous processes: the fixed design case. J Multivar Anal 33:72–88

    Article  MATH  MathSciNet  Google Scholar 

  • Georgiev AA (1985) Local properties of function fitting estimates with applications to system identification. In: Grossmann W et al. (eds) Mathematical statistics and applications, vol B. Proceedings 4th Pannonian symposium on mathematical statistics, 4–10, September 1983. Bad Tatzmannsdorf, Austria, Reidel, Dordrecht, pp 141–151

  • Hu TZ (2000) Negatively superadditive dependence of random variables with applications. Chin J Appl Probab Stat 16:133–144

    MATH  MathSciNet  Google Scholar 

  • Hu TC, Wang KL, Rosalsky A (2015) Complete convergence theorems for extended negatively dependent random variables. Sankhyā A Indian J Stat 77(1):1–29

    MATH  MathSciNet  Google Scholar 

  • Joag-Dev K, Proschan F (1983) Negative association of random variables with applications. Ann Stat 11:286–295

    Article  MATH  MathSciNet  Google Scholar 

  • Lehmann E (1966) Some concepts of dependence. Ann Math Stat 37:1137–1153

    Article  MATH  MathSciNet  Google Scholar 

  • Liang HY, Jing BY (2005) Asymptotic properties for estimates of nonparametric regression models based on negatively associated sequences. J Multivar Anal 95:227–245

    Article  MATH  MathSciNet  Google Scholar 

  • Liu L (2009) Precise large deviations for dependent random variables with heavy tails. Stat Probab Lett 79:1290–1298

    Article  MATH  MathSciNet  Google Scholar 

  • Liu L (2010) Necessary and sufficient conditions for moderate deviations of dependent random variables with heavy tails. Sci China Ser A Math 53(6):1421–1434

    Article  MATH  MathSciNet  Google Scholar 

  • Ordóñez Cabrera M, Rosalsky A, Volodin A (2012) Some theorems on conditional mean convergence and conditional almost sure convergence for randomly weighted sums of dependent random variables. Test 21:369–385

    Article  MATH  MathSciNet  Google Scholar 

  • Qiu DH, Chen PY, Antonini RG, Volodin A (2013) On the complete convergence for arrays of rowwise extended negatively dependent random variables. J Korean Math Soc 50(2):379–392

    Article  MATH  MathSciNet  Google Scholar 

  • Roussas GG (1989) Consistent regression estimation with fixed design points under dependence conditions. Stat Probab Lett 8:41–50

    Article  MATH  MathSciNet  Google Scholar 

  • Roussas GG, Tran LT, Ioannides DA (1992) Fixed design regression for time series: asymptotic normality. J Multivar Anal 40:262–291

    Article  MATH  MathSciNet  Google Scholar 

  • Shao QM (2000) A comparison theorem on moment inequalities between negatively associated and independent random variables. J Theor Probab 13(2):343–356

    Article  MATH  MathSciNet  Google Scholar 

  • Shen AT (2011) Probability inequalities for END sequence and their applications. J Inequal Appl 2011:98

    Article  MATH  MathSciNet  Google Scholar 

  • Shen AT, Wu RC, Chen Y, Zhou Y (2013) Conditional convergence for randomly weighted sums of random variables based on conditional residual \(h\)-integrability. J Inequal Appl 2013:11

    Article  MATH  MathSciNet  Google Scholar 

  • Stout WF (1974) Almost sure convergence. Academic Press, New York

    MATH  Google Scholar 

  • Sung SH, Lisawadi S, Volodin A (2008) Weak laws of large numbers for arrays under a condition of uniform integrability. J Korean Math Soc 45(1):289–300

    Article  MATH  MathSciNet  Google Scholar 

  • Sung SH (2013) Convergence in \(r\)-mean of weighted sums of NQD random variables. Appl Math Lett 26:18–24

    Article  MATH  MathSciNet  Google Scholar 

  • Tran LT, Roussas GG, Yakowitz S, Van BT (1996) Fixed design regression for linear time series. Ann Stat 24:975–991

    Article  MATH  MathSciNet  Google Scholar 

  • Wang XJ, Hu TC, Volodin A, Hu SH (2013) Complete convergence for weighted sums and arrays of rowwise extended negatively dependent random variables. Commun Stat Theory Methods 42:2391–2401

    Article  MATH  MathSciNet  Google Scholar 

  • Wang XJ, Wang SJ, Hu SH, Ling JM, Wei YF (2013) On complete convergence of weighted sums for arrays of rowwise extended negatively dependent random variables. Stoch Int J Probab Stoch Process 85(6):1060–1072

    Article  MATH  MathSciNet  Google Scholar 

  • Wang XJ, Li XQ, Hu SH, Wang XH (2014) On complete convergence for an extended negatively dependent sequence. Commun Stat Theory Methods 43(14):2923–2937

    Article  MATH  MathSciNet  Google Scholar 

  • Wang XJ, Xu C, Hu TC, Volodin A, Hu SH (2014) On complete convergence for widely orthant-dependent random variables and its applications in nonparametric regression models. Test 23:607–629

    Article  MATH  MathSciNet  Google Scholar 

  • Wang XJ, Deng X, Zheng LL, Hu SH (2014) Complete convergence for arrays of rowwise negatively superadditive-dependent random variables and its applications. Stat J Theor Appl Stat 48(4):834–850

    MATH  MathSciNet  Google Scholar 

  • Wang XJ, Zheng LL, Xu C, Hu SH (2015) Complete consistency for the estimator of nonparametric regression models based on extended negatively dependent errors. Stat J Theor Appl Stat 49(2):396–407

    MATH  MathSciNet  Google Scholar 

  • Wang XH, Hu SH (2014) Weak laws of large numbers for arrays of dependent random variables. Stoch Int J Probab Stoch Process 86(5):759–775

    Article  MATH  MathSciNet  Google Scholar 

  • Wang XJ, Si ZY (2015) Complete consistency of the estimator of nonparametric regression model under ND sequence. Stat Papers 56:585–596

    Article  MATH  MathSciNet  Google Scholar 

  • Wang SJ, Wang XJ (2013) Precise large deviations for random sums of END real-valued random variables with consistent variation. J Math Anal Appl 402:660–667

    Article  MATH  MathSciNet  Google Scholar 

  • Wu QY (2006) Probability limit theory of mixing sequences. Science Press of China, Beijing

    Google Scholar 

  • Wu YF, Cabrea MO, Volodin A (2014) Complete convergence and complete moment convergence for arrays of rowwise end random variables. Glasnik Matematički 49(69):449–468

    MathSciNet  Google Scholar 

  • Yuan DM, An J (2009) Rosenthal type inequalities for asymptotically almost negatively associated random variables and applications. Sci China Ser A Math 52(9):1887–1904

    Article  MATH  MathSciNet  Google Scholar 

  • Yuan DM, Tao B (2008) Mean convergence theorems for weighted sums of arrays of residually \(h\)-integrable random variables concerning the weights under dependence assumptions. Acta Applicandae Mathematicae 103:221–234

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are most grateful to anonymous referees for careful reading of the manuscript and valuable suggestions which helped in improving an earlier version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aiting Shen.

Additional information

Supported by the National Natural Science Foundation of China (11501004, 11671012), the Natural Science Foundation of Anhui Province (1508085J06) and the Provincial Natural Science Research Project of Anhui Colleges (KJ2015A018).

Appendix

Appendix

Proof of Lemma 2.3

If \(r=1\) or \(r=2\), then we can see that (2.2) holds trivially by \(C_r\)-inequality and Lemma 2.2 with \(p=2\), respectively. So in the following, we only need to consider the case \(1<r<2\).

For fixed \(n\ge 1\), denote \(M_n=\sum _{i=1}^nE|X_i|^r\). Without loss of generality, we assume that \(M_n>0\). For any \(\varepsilon >1\), it is easily seen that

$$\begin{aligned} E\left| \sum _{i=1}^nX_i\right| ^r\le & {} (1+\varepsilon )M_n+\int _{(1+\varepsilon )M_n}^\infty P\left( \left| \sum _{i=1}^nX_i\right| >t^{1/r}\right) dt. \end{aligned}$$
(4.12)

For fixed \(n\ge 1\) and \(t\ge (1+\varepsilon )M_n\), denote for \(1\le i\le n\) that

$$\begin{aligned} Y_i=-t^{1/r}I(X_i<-t^{1/r})+X_iI(|X_i|\le t^{1/r})+t^{1/r}I(X_i>t^{1/r}). \end{aligned}$$

It follows by (4.12) that

$$\begin{aligned} E\left| \sum _{i=1}^nX_i\right| ^r\le & {} (1+\varepsilon )M_n+\int _{(1+\varepsilon )M_n}^\infty \sum _{i=1}^nP\left( \left| X_i\right|>t^{1/r}\right) dt\nonumber \\&+\int _{(1+\varepsilon )M_n}^\infty P\left( \left| \sum _{i=1}^nY_i\right|>t^{1/r}\right) dt\nonumber \\\le & {} (1+\varepsilon )M_n+\int _{(1+\varepsilon )M_n}^\infty \sum _{i=1}^nP\left( \left| X_i\right|>t^{1/r}\right) dt\nonumber \\&+\int _{(1+\varepsilon )M_n}^\infty P\left( \left| \sum _{i=1}^n(Y_i-EY_i)\right| >t^{1/r}-\left| \sum _{i=1}^nEY_i\right| \right) dt\nonumber \\\doteq & {} (1+\varepsilon )M_n+I_1+I_2. \end{aligned}$$
(4.13)

For \(I_1\), we have

$$\begin{aligned} I_1\le \sum _{i=1}^n\int _{0}^\infty P\left( \left| X_i\right| >t^{1/r}\right) dt=\sum _{i=1}^nE|X_i|^r=M_n. \end{aligned}$$
(4.14)

Note that

$$\begin{aligned} \sup _{t\ge (1+\varepsilon )M_n}t^{-1/r}\left| \sum _{i=1}^nEY_i\right|\le & {} 2\sup _{t\ge (1+\varepsilon )M_n}t^{-1/r}\cdot t^{1/r-1}\sum _{i=1}^n E|X_i|^rI(|X_i|> t^{1/r}) \nonumber \\\le & {} 2(1+\varepsilon )^{-1}. \end{aligned}$$
(4.15)

Hence, by (4.15), Markov’s inequality and Lemma 2.2 with \(p=2\), we can get that

$$\begin{aligned} I_2\le & {} \int _{(1+\varepsilon )M_n}^\infty P\left( \left| \sum _{i=1}^n(Y_i-EY_i)\right|>\left[ 1-2(1+\varepsilon )^{-1}\right] t^{1/r}\right) dt\nonumber \\\le & {} \left[ 1-2(1+\varepsilon )^{-1}\right] ^{-2}\int _{(1+\varepsilon )M_n}^\infty t^{-2/r} E\left| \sum _{i=1}^n(Y_i-EY_i)\right| ^2dt\nonumber \\\le & {} C_2\left[ 1-2(1+\varepsilon )^{-1}\right] ^{-2}\sum _{i=1}^n\int _{(1+\varepsilon )M_n}^\infty t^{-2/r} EX_i^2I(|X_i|\le t^{1/r})dt\nonumber \\&+ \, C_2\left[ 1-2(1+\varepsilon )^{-1}\right] ^{-2}\sum _{i=1}^n\int _{(1+\varepsilon )M_n}^\infty P(|X_i|> t^{1/r})dt\nonumber \\\doteq & {} I_{21}+I_{22}. \end{aligned}$$
(4.16)

Here, \(C_2\) is defined by Lemma 2.2. For \(I_{22}\), we have

$$\begin{aligned} I_{22}\le & {} C_2\left[ 1-2(1+\varepsilon )^{-1}\right] ^{-2}\sum _{i=1}^n\int _0^\infty P(|X_i|> t^{1/r})dt\nonumber \\= & {} C_2\left[ 1-2(1+\varepsilon )^{-1}\right] ^{-2}M_n. \end{aligned}$$
(4.17)

For \(I_{21}\), we can see that

$$\begin{aligned}&\int _{(1+\varepsilon )M_n}^\infty t^{-2/r} EX_i^2I(|X_i|\le t^{1/r})dt \le \int _{(1+\varepsilon )M_n}^\infty t^{-2/r} dt\int _{0}^{(1+\varepsilon )^{2/r}M_n^{2/r}}\nonumber \\&\qquad P(|X_i|>y^{1/2})dy +\int _{(1+\varepsilon )M_n}^\infty t^{-2/r} dt\int _{(1+\varepsilon )^{2/r}M_n^{2/r}}^{t^{2/r}} P(|X_i|>y^{1/2})dy\nonumber \\&\quad \doteq J_1+J_2. \end{aligned}$$
(4.18)

For \(J_1\), it follows by Markov’s inequality that

$$\begin{aligned} J_1\le & {} \frac{r}{2-r}(1+\varepsilon )^{1-2/r}M_n^{1-2/r} \int _{0}^{(1+\varepsilon )^{2/r}M_n^{2/r}}E|X_i|^r y^{-r/2}dy\nonumber \\= & {} \frac{2r}{(2-r)^2}E|X_i|^r. \end{aligned}$$
(4.19)

For \(J_2\), we have

$$\begin{aligned} J_2= & {} \int _{(1+\varepsilon )^{2/r}M_n^{2/r}}^{\infty }P(|X_i|>y^{1/2})dy \int _{y^{r/2}}^\infty t^{-2/r} dt\nonumber \\= & {} \frac{r}{2-r}\int _{(1+\varepsilon )^{2/r}M_n^{2/r}}^{\infty }y^{r/2-1}P(|X_i|>y^{1/2})dy\nonumber \\\le & {} \frac{r}{2-r}\int _{0}^{\infty }y^{r/2-1}P(|X_i|>y^{1/2})dy~=~\frac{2}{2-r}E|X_i|^r. \end{aligned}$$
(4.20)

Hence, by (4.16)-(4.20), we can get that

$$\begin{aligned} I_2\le & {} C_2\left[ 1-2(1+\varepsilon )^{-1}\right] ^{-2}M_n+C_2\left[ 1-2(1+\varepsilon )^{-1}\right] ^{-2}\left[ \frac{2r}{(2-r)^2}+\frac{2}{2-r}\right] M_n\nonumber \\= & {} C_2\left[ 1-2(1+\varepsilon )^{-1}\right] ^{-2}\left[ 1+\left( \frac{2}{2-r}\right) ^2\right] M_n. \end{aligned}$$
(4.21)

By (4.13), (4.14) and (4.21), we have

$$\begin{aligned} E\left| \sum _{i=1}^nX_i\right| ^r\le & {} \left\{ 2+\varepsilon +C_2\left[ 1-2(1+\varepsilon )^{-1}\right] ^{-2}\left[ 1+\left( \frac{2}{2-r}\right) ^2\right] \right\} M_n\nonumber \\\doteq & {} f(\varepsilon ) M_n. \end{aligned}$$
(4.22)

It is easily checked that \(f(\varepsilon )\) is positive and continuous on \((1,\infty )\), and

$$\begin{aligned} \lim _{\varepsilon \rightarrow 1^+}f(\varepsilon )=\lim _{\varepsilon \rightarrow \infty }f(\varepsilon )=\infty . \end{aligned}$$

Hence, \(f(\varepsilon )\) has the minimum on \((1,\infty )\). Set \(c_r=\inf _{1<\varepsilon <\infty }f(\varepsilon )\). It is obvious that \(c_r>3\) does not depend on n, and thus (2.2) holds. This completes the proof of the lemma. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, A., Volodin, A. Weak and strong laws of large numbers for arrays of rowwise END random variables and their applications. Metrika 80, 605–625 (2017). https://doi.org/10.1007/s00184-017-0618-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00184-017-0618-z

Keywords

Mathematics Subject Classification

Navigation