Skip to main content
Log in

EWMA control charts for detecting changes in the mean of a long-memory process

  • Published:
Metrika Aims and scope Submit manuscript

Abstract

In this paper EWMA control charts are introduced for detecting changes in the mean of a long-memory process. Besides the modified EWMA scheme the EWMA residual chart is also considered. The control design of the charts is calculated for an ARFIMA(p,d,q) process. In order to assess the introduced charts, the average run length is used as a performance criterion. Using an extensive simulation study, the control charts are compared with each other. The target process is assumed to be an ARFIMA(1,d,1) process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abramowitz M, Stegun IA (1972) Handbook of mathematical functions with formulas, graphs and mathematical tables. Applied Mathematics Series, 55

  • Alwan L, Roberts H (1988) Time series modelling for statistical process control. J Bus Econ Stat 6:87–95

    Google Scholar 

  • Beran J (1994) Statistics for long-memory processes. Chapman & Hall, London

    MATH  Google Scholar 

  • Beran J, Feng Y, Ghosh S, Kulik R (2013) Long-memory processes—probabilistic properties and statistical methods. Springer, New York

    Book  MATH  Google Scholar 

  • Box G, Jenkins G, Reinsel G (1994) Time series analysis—forecasting and control. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  • Brockwell P, Davis R (1991) Time series: theory and methods. Springer, New York

    Book  MATH  Google Scholar 

  • Brook D, Evans D (1972) An approach to the probability distribution of CUSUM run length. Biometrica 59:539–549

    Article  MathSciNet  MATH  Google Scholar 

  • Crowder S (1986) A simple method for studying run-length distributions of exponentially weighted moving average charts. Technometrics 29:401–407

    MathSciNet  MATH  Google Scholar 

  • Crowder S, Hamilton M (1992) An EWMA for monitoring a process standard deviation. J Qual Technol 24:12–21

    Google Scholar 

  • Frisén M (2008) Financial surveillance. Wiley, New Jersey

    MATH  Google Scholar 

  • Granger C, Joyeux R (1980) An introduction to long-range time series models and fractional differencing. J Time Ser Anal 1:15–30

    Article  MathSciNet  MATH  Google Scholar 

  • Granger C (1981) Some properties of time series data and their use in econometric model specification. J Econ 16:121–130

    Article  Google Scholar 

  • Harris T, Ross W (1991) Statistical process control procedures for correlated observations. Can J Chem Eng 69:48–57

    Article  Google Scholar 

  • Hosking J (1981) Fractional differencing. Biometrika 68:165–176

    Article  MathSciNet  MATH  Google Scholar 

  • Knoth S, Frisén M (2012) Minimax optimality of CUSUM for an autoregressive model. Stat Neerl 66:357–379

    Article  MathSciNet  Google Scholar 

  • Knoth S, Schmid W (2004) Control charts for time series: a review. In: Lenz H-J, Wilrich P-T (eds) Fronties in statistical quality control. Physica, vol 7, pp 210–236

  • Lawson AB, Kleinman K (2005) Spatial & syndromic surveillance. Wiley, New Jersey

    Book  Google Scholar 

  • Lu C-W, Reynolds M Jr (1999) EWMA control charts for monitoring the mean of autocorrelated processes. J Qual Technol 31:166–188

    Google Scholar 

  • Lucas J, Saccucci M (1999) Exponentially weighted moving average control schemes: properties and enhancements. Technometrics 32:1–12

    Article  MathSciNet  Google Scholar 

  • Maechler M, Reisen V, Lemonte A, Leisch F, Fraley C (2014) Package ‘fracdiff’. The R project for statistical computing

  • Montgomery D (2009) Introduction to statistical quality control, 6th edn. Wiley, New York

    MATH  Google Scholar 

  • Montgomery D, Mastrangelo C (1991) Some statistical process control methods for autocorrelated data. J Qual Technol 23:179–204

    Google Scholar 

  • Nikiforov I (1975) Sequential analysis applied to autoregressive processes. Autom Remote Control 36:1365–1368

    MATH  Google Scholar 

  • Palma W (2007) Long-memory time series: theory and methods. Wiley, New York

    Book  MATH  Google Scholar 

  • Roberts S (1959) Control charts tests based on geometric moving averages. Technometrics 1:239–250

    Article  Google Scholar 

  • Schmid W (1995) On the run length of a Shewhart chart for correlated data. Stat Pap 36:111–130

    Article  MathSciNet  MATH  Google Scholar 

  • Schmid W (1997a) On EWMA charts for time series. In: Lenz H-J, Wilrich P-T (eds) Frontiers in statistical quality control. Physica, vol 5, pp 115–137

  • Schmid W (1997b) CUSUM control schemes for Gaussian processes. Stat Pap 38:191–217

    Article  MathSciNet  MATH  Google Scholar 

  • Sowell F (1992) Maximum likelihood estimation of stationary univariate fractionally integrated time series models. J Econ 53:165–188

    Article  MathSciNet  Google Scholar 

  • Stoumbos Z, Reynolds M Jr, Ryan TP, Woodall W (2000) The state of statistical process control as we proceed into the 21st century. J Am Stat Assoc 95:992–998

    Article  Google Scholar 

  • Wardell D, Moskowitz H, Plante R (1994a) Run length distributions of residual control charts for autocorrelated processes. J Qual Technol 26:308–317

    MATH  Google Scholar 

  • Wardell D, Moskowitz H, Plante R (1994b) Run length distributions of special-cause control charts for correlated processes (with discussion). Technometrics 36:3–27

    Article  MathSciNet  MATH  Google Scholar 

  • Yashchin E (1993) Performance of CUSUM control schemes for serially correlated observations. Technometrics 35:37–52

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Schmid.

Appendix

Appendix

The following lemmas are of great importance for the proof of Theorem 3.

We make use of the notations \(F_{d}(z)=F(d,1,1-d,z),\ G(d)=\frac{\varGamma (1-2d)}{(\varGamma (1-d))^{2}}\), \(\tilde{G}(d)=\frac{\varGamma (1-2d)}{\varGamma (d)\varGamma (1-d)}\) and \(\bar{G}(d)=\frac{\varGamma (d)}{\varGamma (1-d)}\).

Lemma 2

It holds for \(d \in {\mathbb {R}}-{\mathbb {Z}}\), \(i \in {\mathbb {Z}}\) that

$$\begin{aligned} \frac{\varGamma (d-i)}{\varGamma (1-d-i)} = \frac{\varGamma (d+i)}{\varGamma (1-d+i)}. \end{aligned}$$
(24)

Lemma 3

Suppose that the conditions of the Theorem 3 holds. Let \({\zeta } \in [0,1)\), \(|\rho _{j}| < 1\), \(\rho _{j} \ne 0\), \({\zeta } \ne \rho _{j}\) and \({\zeta } \ne 1/\rho _{j}\). Then it holds that for \(m \ge 0\)

$$\begin{aligned}&\textit{1.}\ \ \ \sum \limits _{i=0}^{m}C(d,i,\rho _{j}){\zeta }^{i}\\&\quad = G(d)\Biggl [\frac{\rho _{j}^{2p}}{1-\frac{{\zeta }}{\rho _{j}}} \Biggl ( F_{d}(\rho _{j}) -\frac{{\zeta }}{\rho _{j}} \sum _{v=0}^{m-1} {\zeta }^v \left( \prod \limits _{k=0}^{v-1}\frac{d+k}{1-d+k}\right) -\left( \frac{{\zeta }}{\rho _{j}}\right) ^{m+1}\Biggr .\Biggr . \\&\qquad \cdot \Biggl .\left( F_{d}(\rho _{j})-\sum _{v=0}^{m-1} \rho _{j}^{v}\left( \prod \limits _{k=0}^{v-1} \frac{d+k}{1-d+k}\right) \right) \Biggr )+F_{d}(\rho _{j}) \\&\qquad \cdot \left( \frac{1-\left( {\zeta }\rho _{j}\right) ^{m+1}}{1-{\zeta } \rho _{j}}\right) +{\zeta }\rho _{j}\sum \limits _{v=1}^{m-1} \left( \prod \limits _{k=0}^{v-1}\frac{d+k}{1-d+k}\right) {\zeta }^{v}\frac{1-({\zeta } \rho _{j})^{m-v}}{1-{\zeta }\rho _{j}} \\&\qquad -\Biggl .1\Biggr ].\\&\textit{2.}\ \ \ \sum \limits _{i=0}^{m}C(d,-i,\rho _{j}){\zeta }^{i}\\&\quad = G(d)\Biggl [\rho _{j}^{2p}\Biggl (F_{d}(\rho _{j}) \frac{1-\left( {\zeta }\rho _{j}\right) ^{m+1}}{1-{\zeta }\rho _{j}}+ {\zeta }\rho _{j}\sum \limits _{v=1}^{m-1}\left( \prod \limits _{k=0}^{v-1} \frac{d+k}{1-d+k}\right) \Biggr .\Biggr . \\&\qquad \cdot \Biggl .{\zeta }^{v}\frac{1-({\zeta }\rho _{j})^{m-v}}{1-{\zeta }\rho _{j}} -1\Biggr )+\frac{1}{1-\frac{{\zeta }}{\rho _{j}}}\left( F_{d}(\rho _{j}) -\frac{{\zeta }}{\rho _{j}} \sum _{v=0}^{m-1} {\zeta }^{v}\right. \\&\qquad \cdot \left( \prod \limits _{k=0}^{v-1}\frac{d+k}{1-d+k}\right) -\left( \frac{{\zeta }}{\rho _{j}}\right) ^{m+1} \Biggl (F_{d}(\rho _{j})\Biggr .\\&\qquad -\Biggl .\left. \sum _{v=0}^{m-1} \rho _{j}^{v} \left( \prod \limits _{k=0}^{v-1} \frac{d+k}{1-d+k} \right) \Biggr )\right) +(\rho _{j}^{2p}-1)\sum \limits _{i=0}^{m} \prod \limits _{k=1}^{i}\left( \frac{d+k-1}{k-d}\right) {\zeta }^{i}\Biggr ]. \end{aligned}$$

Proof

1. We get that

$$\begin{aligned} c_1= & {} \sum \limits _{i=0}^{m}C(d,i,\rho _{j}){\zeta }^{i}=\tilde{G}(d) \left( \rho _{j}^{2p}\sum \limits _{i=0}^{m}\frac{\varGamma (d+i)}{\varGamma (1-d+i)} F_{d+i}(\rho _{j}){\zeta }^{i}\right. \\&\quad +\left. \sum \limits _{i=0}^{m}\frac{\varGamma (d+i)}{\varGamma (1-d+i)}F_{d-i} (\rho _{j}){\zeta }^{i}-\sum \limits _{i=0}^{m}\frac{\varGamma (d+i)}{\varGamma (1-d+i)} {\zeta }^{i}\right) \\&=\tilde{G}(d)(\rho _{j}^{2p}c_{11}+c_{12}-c_{13}). \end{aligned}$$

Furthermore,

$$\begin{aligned} c_{13}=\sum \limits _{i=0}^{m}\frac{\varGamma (d+i)}{\varGamma (1-d+i)}{\zeta }^{i} =\bar{G}(d)\sum \limits _{i=0}^{m}\left( \prod \limits _{k=1}^{i}\frac{d+k-1}{k-d}\right) {\zeta }^{i} \end{aligned}$$

and

$$\begin{aligned} c_{11} = \sum \limits _{i=0}^{m}\frac{\varGamma (d+i)}{\varGamma (1-d+i)}F_{d+i} (\rho _{j}){\zeta }^{i}. \end{aligned}$$

Now it holds that

$$\begin{aligned} \frac{\varGamma (d+i)}{\varGamma (1-d+i)}F_{d+i}(\rho _{j}){\zeta }^{i}= & {} \sum _{j=0}^\infty \frac{\varGamma (d+i+j)}{\varGamma (1-d+i+j)} \rho _{j}^{i+j} ({\zeta }/\rho _{j})^{i} \\= & {} \sum _{v=i}^\infty \frac{\varGamma (d+v)}{\varGamma (1-d+v)} \rho _{j}^{v} ({\zeta }/\rho _{j})^{i} \\= & {} \sum _{v=0}^\infty \! \frac{\varGamma (d\!+\!v)}{\varGamma (1\!-\!d\!+\!v)} \rho _{j}^{v} ({\zeta }/\rho _{j})^{i} \!-\!\! \sum _{v=0}^{i-1} \frac{\varGamma (d\!+\!v)}{\varGamma (1\!-\!d\!+\!v)} \rho _{j}^{v} ({\zeta }/\rho _{j})^{i} \\= & {} ({\zeta }/\rho _{j})^{i} \bar{G}(d) \left( F_{d}(\rho _{j}) - \sum _{v=0}^{i-1} \rho ^v \prod _{k=0}^{v-1} \frac{d+k}{1-d+k} \right) . \end{aligned}$$

Consequently

$$\begin{aligned} c_{11}= & {} \bar{G}(d) \left( F_{d}(\rho _{j}) \frac{1-\left( \frac{{\zeta }}{\rho _{j}}\right) ^{m+1}}{1-\frac{{\zeta }}{\rho _{j}}} - \sum _{i=1}^m \sum _{v=0}^{i-1} {\zeta }^{i} \rho _{j}^{v-i} \prod _{k=0}^{v-1} \frac{d+k}{1-d+k} \right) \\= & {} \bar{G}(d) \left( F_{d}(\rho _{j}) \frac{1-\left( \frac{{\zeta }}{\rho _{j}}\right) ^{m+1}}{1-\frac{{\zeta }}{\rho _{j}}} - \frac{{\zeta }}{\rho _{j}} \frac{\varGamma (1-d)}{\varGamma (d)} \sum _{v=0}^{m-1} {\zeta }^v \frac{1- (\frac{{\zeta }}{\rho _{j}})^{m-v}}{1-\frac{{\zeta }}{\rho _{j}}} \frac{\varGamma (d+v)}{\varGamma (1-d+v)} \right) . \end{aligned}$$

Next we consider the quantity \(c_{12}\). We get that

$$\begin{aligned}&\frac{\varGamma (d+i)}{\varGamma (1-d+i)}F_{d-i}(\rho _{j}){\zeta }^{i}\\&\quad = \sum _{l=0}^\infty \frac{\varGamma (d-i+l)}{\varGamma (1-d-i+l)}\rho _{j}^{l-i} (\rho _{j}{\zeta })^{i} = \sum _{v=-i}^\infty \frac{\varGamma (d+v)}{\varGamma (1-d+v)}\rho _{j}^{v} (\rho {\zeta })^{i} \\&\quad =\sum _{v=0}^\infty \frac{\varGamma (d+v)}{\varGamma (1-d+v)}\rho _{j}^{v}(\rho _{j} {\zeta })^{i}+\sum _{v=1}^{i}\frac{\varGamma (d-v)}{\varGamma (1-v-d)}\rho _{j}^{-v}(\rho _{j} {\zeta })^{i} \\&\quad = (\rho _{j}{\zeta })^{i}\bar{G}(d)\left( F_{d}(\rho _{j})+ \sum _{v=1}^{i}\rho _{j}^{-v}\prod _{k=1}^{v}\frac{d+k-1}{k-d} \right) \end{aligned}$$

and obtain that

$$\begin{aligned} c_{12}= & {} \bar{G}(d) \left( F_{d}(\rho _{j})\sum \limits _{i=0}^{m}\left( {\zeta }\rho _{j} \right) ^{i}+\sum \limits _{i=1}^{m}\left( \prod \limits _{k=1}^{i} \frac{d+k-1}{k-d}\right) {\zeta }^{i}\right. \\&\left. +\sum \limits _{i=1}^{m} \sum \limits _{v=1}^{i-1}\left( \prod \limits _{k=1}^{v} \frac{d+k-1}{k-d}\right) \rho _{j}^{i-v}{\zeta }^{i}\right) \\= & {} \bar{G}(d) \left( F_{d}(\rho _{j})\frac{1-\left( {\zeta }\rho _{j} \right) ^{m+1}}{1-{\zeta }\rho _{j}} + \sum \limits _{i=1}^{m}\left( \prod \limits _{k=1}^{i}\frac{d+k-1}{k-d}\right) {\zeta }^{i}\right. \\&+ \left. {\zeta }\rho _{j}\sum \limits _{v=1}^{m-1} \left( \prod \limits _{k=1}^{v}\frac{d+k-1}{k-d}\right) {\zeta }^{v} \frac{1-({\zeta }\rho _{j})^{m-v}}{1-{\zeta }\rho _{j}}\right) . \end{aligned}$$

Therefore,

$$\begin{aligned} c_{1}= & {} G(d)\left( \rho ^{2p}F_{d}(\rho _{j}) \frac{1-\left( \frac{{\zeta }}{\rho _{j}}\right) ^{m+1}}{1-\frac{{\zeta }}{\rho _{j}}} - \rho _{j}^{2p}\frac{{\zeta }}{\rho _{j}}\sum _{v=0}^{m-1}{\zeta }^{v} \frac{1-(\frac{{\zeta }}{\rho _{j}})^{m-v}}{1-\frac{{\zeta }}{\rho _{j}}} \left( \prod \limits _{k=0}^{v-1}\frac{d+k}{1-d+k} \right) \right. \\&+ \left. F_{d}(\rho _{j})\frac{1-\left( {\zeta }\rho _{j}\right) ^{m+1}}{1-{\zeta } \rho _{j}}+{\zeta } \rho _{j}\sum \limits _{v=1}^{m-1} \left( \prod \limits _{k=0}^{v-1} \frac{d+k}{1-d+k}\right) {\zeta }^{v}\frac{1-({\zeta }\rho _{j})^{m-v}}{1-{\zeta } \rho _{j}}-1\right) \\= & {} G(d)\left( \rho _{j}^{2p}\frac{1}{1-\frac{{\zeta }}{\rho _{j}}}\left( F_{d} (\rho _{j}) -\frac{{\zeta }}{\rho _{j}}\sum _{v=0}^{m-1}{\zeta }^{v}\left( \prod \limits _{k=0}^{v-1}\frac{d+k}{1-d+k}\right) -\left( \frac{{\zeta }}{\rho _{j}} \right) ^{m+1}\left( F_{d}(\rho _{j})\right. \right. \right. \\&-\left. \left. \sum _{v=0}^{m-1}\rho _{j}^{v}\left( \prod \limits _{k=0}^{v-1} \frac{d+k}{1-d+k}\right) \right) \right) +F_{d}(\rho _{j}) \left( \frac{1-\left( {\zeta }\rho _{j}\right) ^{m+1}}{1-{\zeta } \rho _{j}}\right) \\&\left. +{\zeta }\rho _{j}\sum \limits _{v=1}^{m-1} \left( \prod \limits _{k=0}^{v-1}\frac{d+k}{1-d+k}\right) {\zeta }^{v}\frac{1-({\zeta }\rho _{j})^{m-v}}{1-{\zeta } \rho _{j}}-1\right) . \end{aligned}$$

2. It holds that

$$\begin{aligned} d_{1}=\sum \limits _{i=0}^{m}C(d,-i,\rho _{j}){\zeta }^{i} = \tilde{G}(d) (\rho _{j}^{2p}d_{11}+d_{12}-d_{13}), \end{aligned}$$

where

$$\begin{aligned} d_{11}= & {} \sum \limits _{i=0}^{m}\frac{\varGamma (d-i)}{\varGamma (1-d-i)}F_{d-i}(\rho _{j}){\zeta }^{i},\ \ d_{12} = \sum \limits _{i=0}^{m}\frac{\varGamma (d-i)}{\varGamma (1-d-i)}F_{d+i}(\rho _{j}){\zeta }^{i},\\ d_{13}= & {} \sum \limits _{i=0}^{m}\frac{\varGamma (d-i)}{\varGamma (1-d-i)}{\zeta }^{i}. \end{aligned}$$

Applying Lemma 2 we get that \(d_{11} = c_{12}\), \(d_{12} = c_{11}\), and \(d_{13} = c_{13}\). Thus,

$$\begin{aligned} d_{1}= & {} \tilde{G}(d) (\rho _{j}^{2p}d_{11}+d_{12}-d_{13})=G(d)\left( \rho _{j}^{2p} \left( F_{d}(\rho _{j})\frac{1-\left( {\zeta }\rho _{j}\right) ^{m+1}}{1-{\zeta } \rho _{j}}\right. \right. \nonumber \\&+\left. {\zeta }\rho _{j}\sum \limits _{v=1}^{m-1}\left( \prod \limits _{k=0}^{v-1} \frac{d+k}{1-d+k}\right) {\zeta }^{v}\frac{1-({\zeta }\rho _{j})^{m-v}}{1-{\zeta } \rho _{j}}-1\right) +\frac{1}{1-\frac{{\zeta }}{\rho _{j}}}\left( F_{d}(\rho _{j}) \right. \\&-\Biggl .\frac{{\zeta }}{\rho _{j}}\sum _{v=0}^{m-1}{\zeta }^{v} \left( \prod \limits _{k=0}^{v-1}\frac{d+k}{1-d+k}\right) -\left( \frac{{\zeta }}{\rho _{j}}\right) ^{m+1}\left( F_{d}(\rho _{j})\right. \\&\left. \left. - \sum _{v=0}^{m-1}\rho _{j}^v\left( \prod \limits _{k=0}^{v-1} \frac{d+k}{1-d+k}\right) \right) \right) \\&+\left. (\rho _{j}^{2p}-1)\sum \limits _{i=0}^{m} \left( \prod \limits _{k=1}^{i}\frac{d+k-1}{k-d}\right) {\zeta }^{i}\right) . \end{aligned}$$

\(\square \)

Corollary 1

Suppose that the conditions of Theorem 3 hold. Let \({\zeta } \in [0,1)\), \(|\rho _{j}| < 1\), \(\rho _{j} \ne 0\), \({\zeta } \ne \rho _{j}\) and \({\zeta } \ne 1/\rho _{j}\). Then it holds that

  1. 1.

    for \(m \ge 0\ \) difference \(\ D_{1}=\sum \nolimits _{i=1}^{m}C(d,i,\rho _{j}){\zeta }^{m-i} -\sum \nolimits _{i=0}^{m}C(d,i,\rho _{j}){\zeta }^{i-m}\ \) is equal to

    $$\begin{aligned} D_{1}= & {} G(d)\left( \left( \rho _{j}^{2p}(F_{d}(\rho _{j})-1) \left( \frac{1-\left( \frac{1}{{\zeta }\rho _{j}}\right) ^{m+1}}{1-\frac{1}{{\zeta } \rho _{j}}}-1\right) \right. \right. \\&+F_{d}(\rho _{j})\left( \frac{1-\left( \frac{\rho _{j}}{{\zeta }} \right) ^{m+1}}{1-\frac{\rho _{j}}{{\zeta }}}-1\right) \\&+\left. \sum \limits _{i=1}^{m}\sum \limits _{v=1}^{i-1} \left( \prod \limits _{k=1}^{v}\frac{d+k-1}{k-d}\right) \left( \frac{\rho _{j}^{i-v}}{{\zeta }^{i}}-\frac{\rho _{j}^{2p}}{{\zeta }^{i} \rho ^{i-v}}\right) \right) {\zeta }^{m}-\left( \rho _{j}^{2p}(F_{d}(\rho _{j})-1) \right. \\&\cdot \left( \frac{1-\left( \frac{{\zeta }}{\rho _{j}}\right) ^{m+1}}{1 -\frac{{\zeta }}{\rho _{j}}}-1\right) +F_{d}(\rho _{j})\left( \frac{1-\left( {\zeta } \rho _{j}\right) ^{m+1}}{1-{\zeta }\rho _{j}}-1\right) \\&+\sum \limits _{i=1}^{m}\sum \limits _{v=1}^{i-1}\left( \prod \limits _{k=1}^{v}\frac{d+k-1}{k-d}\right) \\&\cdot \left. \left. \left( \rho _{j}^{i-v}{\zeta }^{i}-\frac{\rho _{j}^{2p}{\zeta }^{i}}{\rho _{j}^{i-v}}\right) \right) {\zeta }^{-m}-\left( (1+\rho _{j}^{2p})F_{d}(\rho _{j}) -1\right) {\zeta }^{-m}\right) . \end{aligned}$$
  2. 2.

    for \(m < 0\ \) difference \(\ D_{2}=\sum \nolimits _{i=m+1}^{-1}C(d,i,\rho _{j}){\zeta }^{i-m} -\sum \nolimits _{i=m+1}^{0}C(d,i,\rho _{j}){\zeta }^{m-i}\ \) is equal to

    $$\begin{aligned} D_{2}= & {} G(d)\left( \left( \rho _{j}^{2p}F_{d}(\rho _{j}) \frac{1-\left( \frac{\rho _{j}}{{\zeta }}\right) ^{-m}}{1 -\frac{\rho _{j}}{{\zeta }}}+\left( F_{d}(\rho _{j})-1\right) \frac{1-\left( \frac{1}{{\zeta }\rho _{j}}\right) ^{-m}}{1 -\frac{1}{{\zeta }\rho _{j}}}\right. \right. \\&+(\rho _{j}^{2p}-1)\sum \limits _{i=m+1}^{-1}\left( \prod \limits _{k=i}^{-1} \frac{d-k-1}{-k-d}\right) {\zeta }^{i}\\&\left. +\sum \limits _{i=m+1}^{-2} \sum \limits _{v=i+1}^{-1}\left( \prod \limits _{k=v}^{-1}\frac{d-k-1}{-k-d} \right) \Biggl (\frac{\rho _{j}^{2p}{\zeta }^{i}}{\rho _{j}^{i-v}} -\rho _{j}^{i-v}{\zeta }^{i}\Biggr )\right) {\zeta }^{-m}\\&-\left( \rho _{j}^{2p}F_{d}(\rho _{j})\frac{1-\left( {\zeta }\rho _{j} \right) ^{-m}}{1-{\zeta }\rho _{j}}+\left( F_{d}(\rho _{j})-1\right) \frac{1-\left( \frac{{\zeta }}{\rho _{j}}\right) ^{-m}}{1-\frac{{\zeta }}{\rho _{j}}} \right. \\&+(\rho _{j}^{2p}-1)\sum \limits _{i=m+1}^{-1}\left( \prod \limits _{k=i}^{-1} \frac{d-k-1}{-k-d}\right) {\zeta }^{-i}+\sum \limits _{i=m+1}^{-2} \sum \limits _{v=i+1}^{-1}\left( \prod \limits _{k=v}^{-1}\frac{d-k-1}{-k-d} \right) \\&\cdot \left. \left. \Biggl (\frac{\rho _{j}^{2p}}{\rho _{j}^{i-v}{\zeta }^{i}} -\frac{\rho _{j}^{i-v}}{{\zeta }^{i}}\Biggr )\right) {\zeta }^{m}-\left( (1 +\rho _{j}^{2p})F_{d}(\rho _{j})-1\right) {\zeta }^{-m}\right) . \end{aligned}$$

Proof

1. We get that

$$\begin{aligned} D_{1}= & {} \sum \limits _{i=1}^{m}C(d,i,\rho _{j}){\zeta }^{m-i} -\sum \limits _{i=1}^{m}C(d,i,\rho _{j}){\zeta }^{i-m}-C(d,0, \rho _{j}){\zeta }^{-m} \\= & {} c_{1}{\zeta }^{m}-c_{2}{\zeta }^{-m}-c_{3}{\zeta }^{-m} \end{aligned}$$

with

$$\begin{aligned} c_{3}=C(d,0,\rho _{j})=G(d)\left( (1+\rho _{j}^{2p})F_{d}(\rho _{j})-1\right) \end{aligned}$$

and

$$\begin{aligned} c_{1}=\sum \limits _{i=1}^{m}C(d,i,\rho _{j}){\zeta }^{-i},\ \ c_{2}=\sum \limits _{i=1}^{m}C(d,i,\rho _{j}){\zeta }^{i}. \end{aligned}$$

Applying Lemma 3 we get that

$$\begin{aligned} c_{1}= & {} G(d)\left( \rho _{j}^{2p}(F_{d}(\rho _{j})-1)\left( \frac{1 -\left( \frac{1}{{\zeta }\rho _{j}}\right) ^{m+1}}{1-\frac{1}{{\zeta } \rho _{j}}}-1\right) +F_{d}(\rho _{j})\left( \frac{1-\left( \frac{\rho _{j}}{{\zeta }} \right) ^{m+1}}{1-\frac{\rho _{j}}{{\zeta }}}-1\right) \right. \\&+ \left. \sum \limits _{i=1}^{m}\sum \limits _{v=1}^{i-1} \left( \prod \limits _{k=1}^{v}\frac{d+k-1}{k-d}\right) \left( \frac{\rho _{j}^{i-v}}{{\zeta }^{i}}-\frac{\rho _{j}^{2p}}{{\zeta }^{i} \rho _{j}^{i-v}}\right) \right) . \end{aligned}$$

Result for \(c_{2}\) is obtained by replacing \({\zeta }\) by \(1/{\zeta }\) in \(c_1\).

$$\begin{aligned} c_{2}= & {} G(d)\left( \rho _{j}^{2p}(F_{d}(\rho _{j})-1)\left( \frac{1 -\left( \frac{{\zeta }}{\rho _{j}}\right) ^{m+1}}{1-\frac{{\zeta }}{\rho _{j}}} -1\right) +F_{d}(\rho _{j})\left( \frac{1-\left( \rho _{j}{\zeta }\right) ^{m+1}}{1 -\rho _{j}{\zeta }}-1\right) \right. \\&\left. +\sum \limits _{i=1}^{m}\sum \limits _{v=1}^{i-1}\left( \prod \limits _{k=1}^{v}\frac{d+k-1}{k-d}\right) \left( \rho _{j}^{i-v}{\zeta }^{i} -\frac{\rho _{j}^{2p}{\zeta }^{i}}{\rho _{j}^{i-v}}\right) \right) . \end{aligned}$$

By inserting the expressions of \(c_1\), \(c_2\), and \(c_3\) we get the desired result.

2. It holds that

$$\begin{aligned} D_{2}= & {} \sum \limits _{i=m+1}^{0}C(d,i,\rho _{j}){\zeta }^{i-m} -\sum \limits _{i=m+1}^{0}C(d,i,\rho _{j}){\zeta }^{m-i}-C(d,0, \rho _{j}){\zeta }^{-m} \\= & {} d_{1}{\zeta }^{-m}-d_{2}{\zeta }^{m}-d_{3}{\zeta }^{-m} \end{aligned}$$

with

$$\begin{aligned} d_{3}=G(d)\left( (1+\rho _{j}^{2})F_{d}(\rho _{j})-1\right) \end{aligned}$$

and

$$\begin{aligned} d_{1}= & {} \sum \limits _{i=m+1}^{0}C(d,i,\rho _{j}){\zeta }^{i}=C(d,0,\rho _{j}) +\sum \limits _{i=1}^{-m-1}C(d,i,\rho _{j}){\zeta }^{i},\\ d_{2}= & {} \sum \limits _{i=m+1}^{0}C(d,i,\rho _{j}){\zeta }^{-i} =C(d,0,\rho _{j})+\sum \limits _{i=1}^{-m-1}C(d,i,\rho _{j}){\zeta }^{-i}. \end{aligned}$$

The sum \(d_{1}\) can be obtained by applying Lemma 3 and by replacing m to \(-m-1\). Thus we get that

$$\begin{aligned} d_{1}= & {} G(d)\left( \rho _{j}^{2p}F_{d}(\rho _{j})\frac{1-\left( \frac{\rho _{j}}{{\zeta }}\right) ^{-m}}{1-\frac{\rho _{j}}{{\zeta }}} +(F_{d}(\rho _{j})-1)\frac{1-\left( \frac{1}{{\zeta }\rho }\right) ^{-m}}{1 -\frac{1}{{\zeta }\rho _{j}}}\right. \\&+ (\rho _{j}^{2p}-1)\sum \limits _{i=m+1}^{-1}\left( \prod \limits _{k=i}^{-1} \frac{d-k-1}{-k-d}\right) {\zeta }^{i}+\sum \limits _{i=m+1}^{-2} \sum \limits _{v=i+1}^{-1}\left( \prod \limits _{k=v}^{-1}\frac{d-k-1}{-k-d} \right) \\&\cdot \left. \left( \frac{\rho _{j}^{2p}{\zeta }^{i}}{\rho _{j}^{i-v}} -\rho _{j}^{i-v}{\zeta }^{i}\right) \right) . \end{aligned}$$

Result for \(d_{2}\) is obtained by replacing \({\zeta }\) by \(1/{\zeta }\) in \(d_1\).

$$\begin{aligned} d_{2}= & {} G(d)\left( \rho _{j}^{2p}F_{d}(\rho _{j})\frac{1-\left( {\zeta } \rho _{j}\right) ^{-m}}{1-{\zeta }\rho _{j}}+(F_{d}(\rho _{j})-1) \frac{1-\left( \frac{{\zeta }}{\rho _{j}}\right) ^{-m}}{1-\frac{{\zeta }}{\rho _{j}}} \right. \\&+ \left. (\rho _{j}^{2p}-1)\sum \limits _{i=m+1}^{-1}\left( \prod \limits _{k=i}^{-1} \frac{d-k-1}{-k-d}\right) {\zeta }^{-i}+\sum \limits _{i=m+1}^{-2} \sum \limits _{v=i+1}^{-1}\left( \prod \limits _{k=v}^{-1}\frac{d-k-1}{-k-d} \right) \right. \\&\cdot \left. \left( \frac{\rho _{j}^{2p}}{\rho _{j}^{i-v}{\zeta }^{i}} -\frac{\rho _{j}^{i-v}}{{\zeta }^{i}}\right) \right) . \end{aligned}$$

By inserting the expressions of \(d_1\), \(d_2\), and \(d_3\) we get the desired result. Hereby we proved corollary. \(\square \)

Corollary 2

Assume that the conditions of Theorem 2 are satisfied. Let \({\zeta } \in [0,1)\), \(|\rho _{j}| < 1\), \(\rho _{j} \ne 0\), \({\zeta } \ne \rho _{j}\) and \({\zeta } \ne 1/\rho _{j}\). Then it holds that

$$\begin{aligned} \textit{1.}\ \ \ \sum \limits _{i=0}^{\infty }C(d,i,\rho _{j}){\zeta }^{i}= & {} G(d)\Biggl [\frac{\rho _{j}^{2p}}{1-\frac{{\zeta }}{\rho _{j}}} \left( F_{d}(\rho _{j})-\frac{{\zeta }}{\rho _{j}}F_{d}({\zeta })\right) -F_{d}({\zeta })\Biggr .\\&+\Biggl .\frac{1}{1-{\zeta }\rho _{j}}\left( F_{d}(\rho _{j})+F_{d}({\zeta }) -1\right) \Biggr ].\\ \textit{2.}\ \ \ \sum \limits _{i=0}^{\infty }C(d,-i,\rho _{j}){\zeta }^{i}= & {} G(d)\Biggl [\frac{\rho _{j}^{2p}}{1-{\zeta }\rho }\left( F_{d}(\rho _{j}) +F_{d}({\zeta })-1\right) -F_{d}({\zeta })\Biggr .\\&+\Biggl .\frac{1}{1-\frac{{\zeta }}{\rho _{j}}}\left( F_{d}(\rho _{j}) -\frac{{\zeta }}{\rho _{j}}F_{d}({\zeta })\right) \Biggr ]. \end{aligned}$$

Proof

This result is immediately obtained from Lemma 3 if we consider the limit as m tends to infinity. \(\square \)

Next we give the proof of Theorem 3.

Proof

From Lemma 1 we have that asymptotic variance of the control statistic for EWMA control charts is defined as (13) and the autocovariance function for ARFIMA (p,d,q) process as (5). Therefore,

$$\begin{aligned} \sigma _{e}^{2}= & {} \sigma ^{2}\frac{\lambda }{2-\lambda }\sum \limits _{l=-q}^{q} \sum \limits _{j=1}^{p}\psi (l)\xi _{j}\sum \limits _{k=-\infty }^{\infty }C(d,p+l-k, \rho _{j})\left( 1-\lambda \right) ^{\left| k\right| } \\&=\sigma ^{2}\frac{\lambda }{2-\lambda }\sum \limits _{l=-q}^{q} \sum \limits _{j=1}^{p}\psi (l)\xi _{j}\sum \limits _{k=-\infty }^{\infty }C(d,m-k, \rho _{j}){\zeta }^{\left| k\right| } \\&=\sigma ^{2}\frac{\lambda }{2-\lambda }\sum \limits _{m=p-q}^{p+q} \sum \limits _{j=1}^{p}\psi (l)\xi _{j}\sum \limits _{i=-\infty }^{\infty }C(d,i, \rho _{j}){\zeta }^{\left| m-i\right| }\\&=\sigma ^{2}\frac{\lambda }{2-\lambda } \sum \limits _{m=p-q}^{p+q}\sum \limits _{j=1}^{p}\psi (l)\xi _{j}S_{mj} \end{aligned}$$

Now we have to calculate sum \(S_{mj}\):

$$\begin{aligned} S_{mj}=\sum \limits _{i=-\infty }^{\infty }C(d,i,\rho _{j}){\zeta }^{\left| m-i\right| } =\sum \limits _{i=-\infty }^{m}C(d,i,\rho _{j}){\zeta }^{m-i}+\sum \limits _{i=m+1}^{\infty } C(d,i,\rho _{j}){\zeta }^{i-m} \end{aligned}$$

For \(m\ge 0\)

$$\begin{aligned}&\sum \limits _{i=0}^{\infty }C(d,-i,\rho _{j}){\zeta }^{m+i}+\sum \limits _{i=1}^{m} C(d,i,\rho _{j}){\zeta }^{m-i}+\sum \limits _{i=0}^{\infty }C(d,i,\rho _{j}){\zeta }^{i-m}\\&\quad -\sum \limits _{i=0}^{m}C(d,i,\rho _{j}){\zeta }^{i-m}. \end{aligned}$$

For \(m<0\)

$$\begin{aligned}&\sum \limits _{i=0}^{\infty }C(d,-i,\rho _{j}){\zeta }^{m+i} -\sum \limits _{i=m+1}^{0}C(d,i,\rho _{j}){\zeta }^{m-i} +\sum \limits _{i=0}^{\infty }C(d,i,\rho _{j}){\zeta }^{i-m}\\&\quad +\sum \limits _{i=m+1}^{-1}C(d,i,\rho _{j}){\zeta }^{i-m}. \end{aligned}$$

Hence,

$$\begin{aligned} S_{mj}=\sum \limits _{i=-\infty }^{m}C(d,i,\rho _{j}){\zeta }^{m-i} +\sum \limits _{i=m+1}^{\infty }C(d,i,\rho _{j}){\zeta }^{i-m}={\zeta }^{-m}A_{1} +{\zeta }^{m}A_{2}+A_{3}+A_{4} \end{aligned}$$

with

$$\begin{aligned} A_{1}= & {} \sum \limits _{i=0}^{\infty }C(d,i,\rho _{j}){\zeta }^{i}, \\ A_{2}= & {} \sum \limits _{i=0}^{\infty }C(d,-i,\rho _{j}){\zeta }^{i}, \\ A_{3}= & {} \sum \limits _{i=1}^{m}C(d,i,\rho _{j}){\zeta }^{m-i}-\sum \limits _{i=0}^{m} C(d,i,\rho _{j}){\zeta }^{i-m},\\ A_{4}= & {} \sum \limits _{i=m+1}^{-1}C(d,i,\rho _{j}){\zeta }^{i-m} -\sum \limits _{i=m+1}^{0}C(d,i,\rho _{j}){\zeta }^{m-i}. \end{aligned}$$

From Corollary 1 and Corollary 2 we have that

$$\begin{aligned} \sigma _{e}^{2}= & {} \sigma ^{2}\frac{\varGamma (1-2d)}{(\varGamma (1-d))^{2}} \frac{\lambda }{2-\lambda }\sum \limits _{l=-q}^{q}\sum \limits _{j=1}^{p} \psi (l)\xi _{j}\left[ \frac{{\zeta }^{p+l}+\frac{\rho _{j}^{2p}}{{\zeta }^{p+l}}}{1 -\frac{{\zeta }}{\rho _{j}}}\left( F_{d}(\rho _{j})-\frac{{\zeta }}{\rho }F_{d}({\zeta }) \right) \right. \\&\quad +\,\frac{{\zeta }^{p+l}\rho _{j}^{2p}+\frac{1}{{\zeta }^{p+l}}}{1-{\zeta }\rho _{j}} \left( F_{d}(\rho _{j})+F_{d}({\zeta })-1\right) -\left( {\zeta }^{p+l}+\frac{1}{{\zeta }^{p +l}}\right) F_{d}({\zeta })\\&\quad +\,{\zeta }^{p+l} \left\{ \rho _{j}^{2p}(F_{d}(\rho _{j})-1)\left( \frac{1 -\left( \frac{1}{{\zeta }\rho _{j}}\right) ^{p+l+1}}{1-\frac{1}{{\zeta }\rho _{j}}} -1\right) \right. \\&\quad +\Biggl .F_{d}(\rho _{j})\left( \frac{1-\left( \frac{\rho _{j}}{{\zeta }} \right) ^{p+l+1}}{1-\frac{\rho _{j}}{{\zeta }}}-1\right) \\&\quad \left. +\sum \limits _{i=1}^{p+l} \sum \limits _{v=1}^{i-1}\left( \prod \limits _{k=1}^{v}\frac{d+k-1}{k-d}\right) \left( \frac{\rho _{j}^{i-v}}{{\zeta }^{i}}-\frac{\rho _{j}^{2p}}{{\zeta }^{i} \rho _{j}^{i-v}}\right) \right\} \\&\quad -{\zeta }^{-p-l} \left\{ \rho _{j}^{2p}(F_{d}(\rho _{j})-1) \left( \frac{1-\left( \frac{{\zeta }}{\rho _{j}}\right) ^{p+l+1}}{1 -\frac{{\zeta }}{\rho _{j}}}-1\right) \right. \\&\quad +F_{d}(\rho _{j})\left( \frac{1 -\left( {\zeta }\rho _{j}\right) ^{p+l+1}}{1-{\zeta }\rho _{j}}-1\right) \Biggr .\\&\quad +\left. \Biggl .\sum \limits _{i=1}^{p+l}\sum \limits _{v=1}^{i-1} \left( \prod \limits _{k=1}^{v}\frac{d+k-1}{k-d}\right) \left( \rho _{j}^{i-v}{\zeta }^{i}-\frac{\rho _{j}^{2p}{\zeta }^{i}}{\rho _{j}^{i-v}} \right) \right\} + {\zeta }^{-p-l} \left\{ \rho _{j}^{2p}F_{d}(\rho _{j}) \right. \\&\quad \cdot \frac{1-\left( \frac{\rho _{j}}{{\zeta }}\right) ^{-p-l}}{1 -\frac{\rho _{j}}{{\zeta }}}+(F_{d}(\rho _{j})-1)\frac{1-\left( \frac{1}{{\zeta }\rho _{j}} \right) ^{-p-l}}{1-\frac{1}{{\zeta }\rho _{j}}}+(\rho _{j}^{2p}-1)\\&\quad \cdot \sum \limits _{i=p+l+1}^{-1}\left( \prod \limits _{k=i}^{-1} \frac{d-k-1}{-k-d}\right) {\zeta }^{i}\\&\quad +\left. \sum \limits _{i=p+l+1}^{-2} \sum \limits _{v=i+1}^{-1}\left( \prod \limits _{k=v}^{-1}\frac{d-k-1}{-k-d} \right) \left( \frac{\rho _{j}^{2p}{\zeta }^{i}}{\rho _{j}^{i-v}} -\rho _{j}^{i-v}{\zeta }^{i}\right) \right\} \\&\quad -{\zeta }^{p+l} \left\{ \rho _{j}^{2p}F_{d}(\rho _{j})\frac{1-\left( {\zeta } \rho _{j}\right) ^{-p-l}}{1-{\zeta }\rho _{j}}+(F_{d}(\rho _{j})-1)\frac{1 -\left( \frac{{\zeta }}{\rho _{j}}\right) ^{-p-l}}{1-\frac{{\zeta }}{\rho _{j}}}\right. \end{aligned}$$
$$\begin{aligned}&\qquad +\,(\rho _{j}^{2p}-1)\sum \limits _{i=p+l+1}^{-1}\left( \prod \limits _{k=i}^{-1} \frac{d-k-1}{-k-d}\right) {\zeta }^{-i}+\sum \limits _{i=p+l+1}^{-2} \sum \limits _{v=i+1}^{-1}\left( \prod \limits _{k=v}^{-1}\frac{d-k-1}{-k-d}\right) \\&\qquad \cdot \left. \left. \left( \frac{\rho _{j}^{2p}}{\rho _{j}^{i-v}{\zeta }^{i}} -\frac{\rho _{j}^{i-v}}{{\zeta }^{i}}\right) \right\} -2((1+\rho _{j}^{2p})F_{d} (\rho _{j})-1){\zeta }^{-p-l}\right] . \end{aligned}$$

Thus, we proved the theorem. \(\square \)

In the discussion below the proof of Proposition 1 is given.

Proof

While proving we make use of the notation \(c=(1-d)[(1-d)(1+\beta ^2)-2\beta d]\).

The autocovariance function of ARFIMA(0,d,1) process is given in (8). Hence,

$$\begin{aligned} \sigma _{e}^{2}= & {} \sigma ^{2}\frac{\lambda }{2-\lambda }\tilde{G}(d) \sum \limits _{i=-\infty }^{\infty }\frac{\varGamma (d+i)}{\varGamma (1-d+i)} \frac{(1-\beta )^{2}i^{2}-c}{i^{2}-(1-d)^{2}}(1-\lambda )^{\left| i\right| }\\= & {} \sigma ^{2}\frac{\lambda }{2-\lambda }\tilde{G}(d)\left[ \sum \limits _{i=0}^{\infty } \frac{\varGamma (d-i)}{\varGamma (1-d-i)}\frac{(1-\beta )^{2}i^{2}-c}{i^{2}-(1-d)^{2}} (1-\lambda )^{i}\right. \\&\cdot \left. \frac{(1-\beta )^{2}i^{2}-c}{i^{2}-(1-d)^{2}}(1-\lambda )^{i} +\sum \limits _{i=0}^{\infty }\frac{\varGamma (d+i)}{\varGamma (1-d+i)}\frac{(1 -\beta )^{2}i^{2}-c}{i^{2}-(1-d)^{2}}(1-\lambda )^{i}\right. \\&-\left. \bar{G}(d)\frac{c}{(1-d)^{2}}\right] =\sigma ^{2}\frac{\lambda }{2-\lambda } \tilde{G}(d)\left[ S_{1}+S_{2}-\bar{G}(d)\frac{c}{(1-d)^{2}}\right] . \end{aligned}$$

From Lemma 2 we have that \(S_{1}=S_{2}\). Now the sum \(S_{2}\) is calculated.

$$\begin{aligned} S_{1}= & {} \sum \limits _{i=0}^{\infty }\frac{\varGamma (d+i)}{\varGamma (1-d+i)} \frac{(1-\beta )^{2}i^{2}-c}{i^{2}-(1-d)^{2}}(1-\lambda )^{i} \\= & {} (1-\beta )^{2}\sum \limits _{i=0}^{\infty }\frac{\varGamma (d+i)}{\varGamma (1-d+i)} \frac{i^{2}}{i^{2}-(1-d)^{2}}(1-\lambda )^{i} \\&\quad -c\sum \limits _{i=0}^{\infty }\frac{\varGamma (d+i)}{\varGamma (1-d+i)} \frac{(1-\lambda )^{i}}{i^{2}-(1-d)^{2}}=(1-\beta )^{2}\sum \limits _{i=0}^{\infty } \frac{\varGamma (d+i)}{\varGamma (1-d+i)}(1-\lambda )^{i}\\&\quad +\,(1-\beta )^{2}(1-d)^{2}\sum \limits _{i=0}^{\infty }\frac{\varGamma (d+i)}{\varGamma (1-d+i)} \frac{(1-\lambda )^{i}}{i^{2}-(1-d)^{2}}\\&\quad -c\sum \limits _{i=0}^{\infty }\frac{\varGamma (d+i)}{\varGamma (1-d+i)} \frac{(1-\lambda )^{i}}{i^{2}-(1-d)^{2}}=(1-\beta )^{2}\sum \limits _{i=0}^{\infty } \frac{\varGamma (d+i)}{\varGamma (1-d+i)}(1-\lambda )^{i}\\&\quad +\,[(1-\beta )^{2}(1-d)^{2}-c]\sum \limits _{i=0}^{\infty } \frac{\varGamma (d+i)}{\varGamma (1-d+i)}\frac{(1-\lambda )^{i}}{i^{2}-(1-d)^{2}}. \end{aligned}$$

Using properties of the Gaussian hypergeometric function we get that

$$\begin{aligned} S_{1}=S_{2}=\frac{\varGamma (d)}{\varGamma (1-d)}\left[ (1-\beta )^{2}F_{d}(1-\lambda ) -\frac{(1-\beta )^{2}(1-d)^{2}-c}{(1-d)^{2}}F_{d-1}(1-\lambda )\right] . \end{aligned}$$

Therefore, the asymptotic variance of the control statistic of the EWMA control charts for ARFIMA(0,d,1) process is

$$\begin{aligned} \sigma ^{2}_{e}= & {} \sigma ^{2}\frac{\lambda }{2-\lambda } \frac{\varGamma (1-2d)}{(\varGamma (1-d))^{2}}\left( 2(1-\beta )^{2}F_d(1-\lambda ) -4\beta \frac{2d-1}{1-d}F_{d-1}(1-\lambda )-1-\beta ^{2}\right. \\&+\left. \frac{2\beta d}{1-d}\right) . \end{aligned}$$

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rabyk, L., Schmid, W. EWMA control charts for detecting changes in the mean of a long-memory process. Metrika 79, 267–301 (2016). https://doi.org/10.1007/s00184-015-0555-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00184-015-0555-7

Keywords

Navigation