Skip to main content
Log in

Distribution function estimation via Bernstein polynomial of random degree

  • Published:
Metrika Aims and scope Submit manuscript

Abstract

The problem of distribution function (df) estimation arises naturally in many contexts. The empirical and the kernel df estimators are well known. There is another df estimator based on a Bernstein polynomial of degree m. For a Bernstein df estimator, plays the same role as the bandwidth in a kernel estimator. The asymptotic properties of the Bernstein estimator has been studied so far assuming m is non random, chosen subjectively. We propose algorithms for data driven choice of m. Such an m is a function of the data, i.e. random. We obtain the convergence rates of a Bernstein df estimator, using a random m, for i.i.d., strongly mixing and a broad class of linear processes. The estimator is shown to be consistent for any stationary, ergodic process satisfying some conditions. Using simulations and analysis of real data the finite sample performance of the different df estimators are compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Altman N, Léger C (1995) Bandwidth selection for kernel distribution function estimation. J Stat Plan Inference 46:195–214

    Article  MathSciNet  MATH  Google Scholar 

  • Azzalini A (1981) Estimation of a distribution function and quantiles by a kernel method. Biometrika 68(1):326–328

    Article  MathSciNet  Google Scholar 

  • Bowman A, Hall P, Prvan T (1998) Bandwidth selection for the smoothing of distribution functions. Biometrika 85:799–808

    Article  MathSciNet  MATH  Google Scholar 

  • Berkes I, Hörmann S, Schauer J (2009) Asymptotic results for the empirical process of stationary sequences. Stoch Process Appl 119:1298–1324

    Article  MathSciNet  MATH  Google Scholar 

  • Babu GJ, Canty AJ, Chaubey YP (2002) Application of Bernstein polynomials for smooth estimation of a distribution and density function. J Stat Plan Inference 105:377–392

    Article  MathSciNet  MATH  Google Scholar 

  • Babu GJ, Chaubey YP (2006) Smooth estimation of a distribution and density function on a hypercube using Bernstein polynomials for dependent random vectors. Stat Probab Lett 76:959–969

    Article  MathSciNet  MATH  Google Scholar 

  • Billingsley P (1999) Convergence of probability measures. Wiley, New York

    Book  MATH  Google Scholar 

  • Chacón JE, Rodríguez-Casal A (2010) A note on the universal consistency of the kernel distribution function estimator. Stat Probab Lett (in press). doi:10.1016/j.spl.2010.05.007

  • del Río AQ, Estévez-Pérez G (2012) Nonparametric kernel distribution function estimation with kerdiest: an R package for bandwidth choice and applications. J Stat Softw 50(8):1–21

    Google Scholar 

  • Dutta S (2013) Local smoothing for kernel distribution function estimation. Commun Stat Simul Comput 43(2):378–389. doi:10.1080/03610918.2012.703360

    Article  Google Scholar 

  • Dutta S, Goswami A (2013) Pointwise and uniform convergence of kernel density estimators using random bandwidths. Stat Probab Lett 83:2711–2720

    Article  MathSciNet  MATH  Google Scholar 

  • Falk FY (1983) Relative efficiency and deficiency of kernel type estimators of distribution functions. Stat Neerl 37(2):73–83

    Article  MathSciNet  MATH  Google Scholar 

  • Feller W (1984) An introduction to probability theory and its applications, vol 2. Wiley, New York

    MATH  Google Scholar 

  • Hesse CH (1990) Rates of convergence for the empirical distribution function and the empirical characteristic function of a broad class of linear processes. J Multivar Anal 35:186–202

    Article  MathSciNet  MATH  Google Scholar 

  • Leblanc A (2009) Chung–Smirnov property for Bernstein estimators of distribution functions. J Nonparametr Stat 21:133–142

    Article  MathSciNet  MATH  Google Scholar 

  • Leblanc A (2012a) On estimating distribution functions using Bernstein polynomials. Ann Inst Stat Math 64:919–943

    Article  MathSciNet  MATH  Google Scholar 

  • Leblanc A (2012b) On the boundary properties of Bernstein polynomial estimators of density and distribution functions. J Stat Plan Inference 142:2762–2778

    Article  MathSciNet  MATH  Google Scholar 

  • Larsen TB, Nielsen JP, Guillen M, Bolance C (2005) Kernel density estimation for heavy-tailed distributions using the Champernowne transformation. Statistics 39(6):503–518

    Article  MathSciNet  MATH  Google Scholar 

  • Merlevède F, Peligrad M, Rio E (2009) Bernstein inequality and moderate deviations under strong mixing conditions. IMS collections, high dimensional probability V, Institute of Mathematical Statistics pp 273–292. doi:10.1214/09-IMSCOLL518

  • Pham DT, Tran LT (1985) Some mixing properties of time series models. Stoch Process Appl 19:297–303

    Article  MathSciNet  MATH  Google Scholar 

  • Rao BLSP (1983) Nonparametric functional estimation. Academic Press Inc, New York

    MATH  Google Scholar 

  • Reiss RD (1981) Nonparametric estimation of smooth distribution functions. Scand J Stat 8(2):116–119

    MathSciNet  MATH  Google Scholar 

  • Serfling R (1980) Approximation theorems of mathematical statistics. Wiley, New York

    Book  MATH  Google Scholar 

  • Wand MP, Marron JS, Ruppert D (1991) Transformations in density estimation. J Am Stat Assoc 86(414):343–353

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The author is grateful to the esteemed reviewers/referees and the Associate Editor for their detailed suggestions which lead to significant improvement of the paper. The author is thankful to Prof. Alok Goswami, ISI Kolkata, for his comments and suggestions on some of the proofs in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santanu Dutta.

Appendix

Appendix

Proof of Lemma 1

In this case \(||F_n-F||=\sup _{[0,1]}|F_n(x)-F(x)|\). Let us partition the interval [0, 1] into \(k_n=[n^{2/3}]+1\) subintervals \(J_{ni}=[\frac{(i-1)}{n^{2/3}}, \frac{i}{n^{2/3}}),\ i=1,2,\ldots ,[n^{2/3}],\) and \(J_{nk_n}=([n^{2/3}]/n^{2/3},\ 1]\) each of length \(n^{-2/3}\) or less (the last interval). Then

\(y_{i-1}\) is the lower endpoint of the interval \(J_{ni},\ i=,1,\ldots ,k_n\). Under the assumption that F has a bounded density

$$\begin{aligned} \sup _{x\in J_{ni}}|F(x)-F(y_{i-1})|\le \frac{||f||}{n^{2/3}},\ i=1,\ldots ,k_n. \end{aligned}$$

The right-hand side of the above inequality is free of i and goes to zero as n is increased. Therefore there exists N (depending on \(\epsilon >0\)) such that for \(n>N\)

$$\begin{aligned} P\left( n^{1/3}\sup _{x\in J_{ni}}|F(x)-F(y_{i-1})|>\epsilon \right) =0,\quad \ x\in J_{ni}, i=1,\ldots ,k_n. \end{aligned}$$

Moreover

$$\begin{aligned}&F_n(y_{i-1})-F(y_{i-1})=\!\frac{1}{n}\sum ^n_{j=1} Z^i_{nj}\\&\text {and}\sup _{x\in J_{ni}}|F_n(x)-F_n(y_{i-1})|\le \frac{1}{n}\sum ^n_{j=1} I\left( X_j\in J_{n,i}\right) \le \frac{1}{n}\sum ^n_{j=1} Y^i_{nj} + \frac{||f||}{n^{2/3}}, \end{aligned}$$

where \(Z^i_{nj}\!=\!I\left( X_j\le y_{i-1}\right) - P\left( X_j\!\le \! y_{i-1}\right) ,\ Y^i_{nj}=I\left( X_j\in J_{n,i}\right) - P\left( X_j\in J_{n,i}\right) , j=1,\ldots , n,\) and \(i=1,\ldots , k_n\). Therefore for \(n>N\),

$$\begin{aligned} P\left( n^{1/3}\sup _{[0,1]}|F_n(x)-F(x)|>\epsilon \right)\le & {} \sum ^{k_n}_{i=1}\left[ P\left( \left| \frac{1}{n}\sum ^n_{j=1} Z^i_{nj}\right| >\frac{\epsilon }{n^{1/3}}\right) \right. \\&\left. +\, P\left( \left| \frac{1}{n}\sum ^n_{j=1} Y^i_{nj}\right| >\frac{\epsilon }{n^{1/3}}\right) \right] \end{aligned}$$

If \(\{X_n\}\) is a stationary strongly mixing process with mixing coefficient \(\alpha (n)\), then for each i, \(\{Z^i_{nj}, j = 1, . . ., n\},\ \{Y^i_{nj}, j = 1, . . ., n\}\) represent strongly mixing stationary sequences of mean zero bounded random variables with a sequence of mixing coefficients bounded by \(\alpha (n)\).

Under the stated conditions \(\alpha (n)\le \exp (-2cn)\) for some \(c > 0\). Under this condition, using Theorem 1 of Merlevède et al. (2009) we get that for \(\epsilon > 0\) and \(n\ge 4\),

$$\begin{aligned}&P\left( \left| \frac{1}{n}\sum ^n_{j=1} Z^i_{nj}\right| >\frac{\epsilon }{n^{1/3}}\right) ,\ P\left( \left| \frac{1}{n}\sum ^n_{j=1} Y^i_{nj}\right| >\epsilon n^{-1/3}\right) \\&\quad \le \exp \left( -\frac{Cn^{2/3}\epsilon ^2}{n^{1/3}+\epsilon \log (n) \log \log (n)}\right) . \end{aligned}$$

Therefore as \(n\rightarrow \infty \)

$$\begin{aligned} P\left( n^{1/3}\sup _{[0,1]}|F_n(x)-F(x)|>\epsilon \right)= & {} O\left( k_n\exp \left( -n^{1/3}C/(\log (n)\log \log (n))\right) \right) \\= & {} O\left( n^{2/3}\exp \left( -n^{1/3}C/(\log (n)\log \log (n))\right) \right) . \end{aligned}$$

\(\square \)

Lemma 2

Let \(\{X_n\}_{n=1,2,\ldots }\) be a strongly mixing process with differentiable marginal density f supported on [0, 1] and \(\alpha (n)<D\rho ^n\), where \(0<\rho <1\) and \(D>0\). Let \(f^{(1)}\) be continuous on [0, 1] and the kernel K satisfies Assumption A. Then for any \(x_0\) as \(n\rightarrow \infty \),

$$\begin{aligned} f^{(1)}_n(x_0)\rightarrow f^{(1)}(x_0)\ \text {a.s.}, \end{aligned}$$

where \(f^{(1)}_n(x)=\frac{1}{nh^2}\sum ^n_{i=1} K^{(1)}\left( \frac{x-X_i}{h}\right) \ \text {and}\ h\) is a multiple of \(n^{-1/9}\).

Proof of Lemma

Under the stated conditions on f we see that as \(n\rightarrow \infty \)

$$\begin{aligned} E(f^{(1)}_n(x_0))=f^{(1)}(x_0)+o(1). \end{aligned}$$

Therefore for every \(\epsilon >0\) there exists N such that for \(n>N\)

$$\begin{aligned} \left| E(f^{(1)}_n(x_0))-f^{(1)}(x_0)\right| <\epsilon /2. \end{aligned}$$

Therefore for \(n>N\),

$$\begin{aligned} P\left( |f^{(1)}_n(x_0)-f^{(1)}(x_0)|>\epsilon \right)\le & {} P\left( |f^{(1)}_n(x_0)-E\left( f^{(1)}_n(x_0)\right) |>\epsilon /2\right) \\= & {} P\left( \frac{1}{n}\left| \sum ^n_{i=1}Y_{ni}\right| >\epsilon h^2/2\right) , \end{aligned}$$

where \(Y_{ni}=\left[ K^{(1)}\left( \frac{x_0-X_i}{h}\right) -E\left\{ K^{(1)}\left( \frac{x_0-X_i}{h}\right) \right\} \right] ,\ i=1,\ldots ,n,\) which represents a sequence of stationary strongly mixing mean zero bounded random variables, with mixing coefficient bounded above by \(\alpha (n)\). Therefore using the Bernstein type inequality for strongly mixing processes in Merlevède et al. (2009) we get that for \(n\ge 4\)

$$\begin{aligned} P\left( |f^{(1)}_n(x_0)-f^{(1)}(x_0)|>\epsilon \right) \le \exp \left( -\frac{Cnh^4\epsilon ^2}{||K^{(1)}||+\epsilon h^2\log (n)\log \log (n)}\right) \end{aligned}$$

For h equal to a multiple of \(n^{-1/9}\),

$$\begin{aligned} P\left( |f^{(1)}_n(x_0)-f^{(1)}(x_0)|>\epsilon \right) \le \exp \left( -\frac{C_1n^{5/9}\epsilon ^2}{\log (n)\log \log (n)}\right) ,\ C_1>0. \end{aligned}$$

Now using Borel–Cantelli Lemma we see that \(f^{(1)}_n(x_0)\rightarrow f^{(1)}(x_0)\), almost surely, as \(n\rightarrow \infty \). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutta, S. Distribution function estimation via Bernstein polynomial of random degree. Metrika 79, 239–263 (2016). https://doi.org/10.1007/s00184-015-0553-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00184-015-0553-9

Keywords

Navigation