Skip to main content

Advertisement

Log in

Testing order restrictions in contingency tables

  • Published:
Metrika Aims and scope Submit manuscript

Abstract

Though several interesting models for contingency tables are defined by a system of inequality constraints on a suitable set of marginal log-linear parameters, the specific features of the corresponding testing problems and the related procedures are not widely well known. After reviewing the most common difficulties which are intrinsic to inequality restricted testing problems, the paper concentrates on the problem of testing a set of equalities against the hypothesis that these are violated in the positive direction and also on testing the corresponding inequalities against the saturated model; we argue that valid procedures should consider these two testing problems simultaneously. By reformulating and adapting procedures appeared in the econometric literature, we propose a likelihood ratio and a multiple comparison procedure which are both based on the joint distribution of two relevant statistics; these statistics are used to divide the sample space into three regions: acceptance of the assumed equality constraints, rejection towards inequalities in the positive direction and rejection towards the unrestricted model. A simulation study indicates that the likelihood ratio based procedure perform substantially better. Our procedures are applied to the analysis of two real data sets to clarify how they work in practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agresti A, Coull BA (2002) The analysis of contingency tables under inequality constraints. J Stat Plan Inference 107:45–73

    Article  MATH  MathSciNet  Google Scholar 

  • Bartolucci F, Forcina A (2000) A likelihood ratio test for mtp2 with binary variables. Ann Stat 28:1206–1218

    Article  MATH  MathSciNet  Google Scholar 

  • Bartolucci F, Forcina A, Dardanoni (2001) Positive quadrant dependence and marginal modelling in two-way tables with ordered margins. J Am Stat Assoc 96:1497–1505

    Article  MATH  MathSciNet  Google Scholar 

  • Bartolucci F, Colombi R, Forcina A (2007) An extended class of marginal link functions for modelling contingency tables by equality and inequality constraints. Stat Sinica 17(2):691

    MATH  MathSciNet  Google Scholar 

  • Bennet CJ (2013) Inference for dominance relations. Int Econ Rev 54(4):1311–1330

    Google Scholar 

  • Bergsma WP, Rudas T (2002) Marginal models for categorical data. Ann Statist 30(1):140–159

    Article  MATH  MathSciNet  Google Scholar 

  • Bishop J, Formby J, Smith W (1991) Lorenz dominance and welfare: changes in the U.S. distribution of income, 1967–1986. Rev Econ Stat 73(1):134–139

    Article  Google Scholar 

  • Bretz F, Hothorn T, Westfall P (2011) Multiple comparisons using R. lecture notes in statistics, vol 195, CRC Press, Boca Raton

  • Cazzaro M, Colombi R (2006) Maximum likelihood inference for log-linear models subject to constraints of double monotone dependence. Stat Methods Appl 15:177–190

    Article  MATH  MathSciNet  Google Scholar 

  • Colombi R, Forcina A (2001) Marginal regression models for the analysis of positive association of ordinal response variables. Biometrika 88(4):1001–1019

    Article  MathSciNet  Google Scholar 

  • Colombi R, Giordano S, Cazzaro M (2014) hmmm: an R package for hierarchical multinomial marginal models. J Stat Softw 59(11):1–25

  • Craig P (2008) A new reconstruction of mutivariate normal orthant probabilities. J R Stat Soc B 70(1):227–243

    MATH  MathSciNet  Google Scholar 

  • Craig P (2012) Orthants. http://www.maths.dur.ac.uk/dma0psc/orthants/, R package version 1.5

  • Dardanoni V, Forcina A (1998) A unified approach to likelihood inference on stochastic orderings in a non parametric context. J Am Stat Assoc 93:1112–1123

    Article  MATH  MathSciNet  Google Scholar 

  • Dardanoni V, Forcina A (1999) Inference for the lorenz curve orderings. Econ J 2:49–75

    MATH  MathSciNet  Google Scholar 

  • Dardanoni V, Fiorini M, Forcina A (2012) Stochastic monotonicity in intergenerational mobility tables. J Appl Econ 27:85–107

    Article  MathSciNet  Google Scholar 

  • Dykstra R, Kochar S, Robertson T (1995) Inference for likelihood ratio ordering in two-sample problems. J Am Stat Assoc 90:1034–1040

    Article  MATH  MathSciNet  Google Scholar 

  • Genz A, Bretz F (2009) Computation of multivariate normal and t probabilities. Lecture Notes in Statistics, vol 195, Springer, Berlin

  • Genz A, Bretz F, Miwa T, Mi X, Leisch F, Scheipl F, Hothorn H (2013) mvtnorm: multivariate normal and t distributions. http://CRAN.R-project.org/package=mvtnorm, R package version 0.9-9996

  • Grömping U (2010) Inference with linear equality and inequality constraints using R: the package ic. infer. J Stat Softw 33(10):1–31

  • Kateri K, Agresti A (2013) Bayesian inference about odds ratio structure in ordinal contingency tabes. Environmetrics 24(5):281–288

    Article  MathSciNet  Google Scholar 

  • Kudo A (1963) A multivariate analogue of the one-sided test. Biometrika 50(3/4):403–418

    Article  MATH  MathSciNet  Google Scholar 

  • Perlman M, Wu L (2002) A defence of the likelihood ratio test for one-sided and order-restricted alternatives. J Stat Plan Inference 107:173–186

    Article  MATH  MathSciNet  Google Scholar 

  • Sasabuchi S (1980) A test of a multivariate normal mean with composite hypotheses determined by linear inequalities. Biometrika 67:429–439

    Article  MATH  MathSciNet  Google Scholar 

  • Shapiro A (1985) Asymptotic distribution of test statistics in the analysis of moment structures under inequality constraints. Biometrika 72:133–144

    Article  MATH  MathSciNet  Google Scholar 

  • Shapiro A (1988) Towards a unified theory of inequality constrained testing in multivariate analysis. Int Stat Rev 56:49–62

    Article  MATH  Google Scholar 

  • Silvapulle MJ, Sen PK (2005) Constrained statistical inference. Wiley, New York

    MATH  Google Scholar 

  • Wermuth N, Marchetti G (2014) Star graphs induce tetrad correlations: for Gaussian as well as for binary variables. Electron J Stat 8:253–273

    Article  MATH  MathSciNet  Google Scholar 

  • Zwermik P, Smith J (2011) Implicit inequality constraints in a binary tree model. Electron J Stat 5:1276–1312

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

We would like to thank an anonymous referee for his/her valuable remarks and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Colombi.

Appendices

Appendix 1: Computation of probability weights

In order to compute the weights \(w_i(\varvec{V},\mathcal {C})\), it may be useful to summarize the geometry of the projection of a random vector \(\varvec{y} \sim \mathcal {N}(\varvec{0},\varvec{V})\) onto a convex cone \( \mathcal {C}=\{\varvec{\eta }:\varvec{D}\varvec{\eta }\ge \varvec{0}\}\), where \(\varvec{D}\) is a \(k\times (t-1)\) matrix of rank \(k\). Let \(\varvec{H}\) be the left component of the Cholesky decomposition of the positive definite matrix \(\varvec{\varPsi } = \varvec{D} \varvec{V} \varvec{D}^{\prime }\) then \(\varvec{z} = \varvec{H}^{-1} \varvec{D}\varvec{y}\,\sim \,N(\varvec{0},\varvec{I}_k)\), the transformation \(\varvec{\lambda }= \varvec{H}^{-1} \varvec{D}\varvec{\eta }\) defines the cone \( \mathcal {C}^* =\{\varvec{\lambda }:\varvec{H} \varvec{\lambda }\ge \varvec{0}, \, \mathcal {C}^* \in \mathfrak {R}^k\}\), it follows that: \(\min _{{\varvec{D}}{\varvec{\eta }}\ge {\varvec{0}}}(\varvec{y}-\varvec{\eta })^{\prime }\varvec{V}^{-1}(\varvec{y}-\varvec{\eta })=\min _{{\varvec{H}}{\varvec{\lambda }}\ge {\varvec{0}}}(\varvec{z}-\varvec{\lambda })^{\prime }(\varvec{z}-\varvec{\lambda })\). The cone \(\mathcal {C}^*\) may also be defined by its generating vectors which are the columns of \(\varvec{U} = \varvec{H}^{-1}\): a vector \(\varvec{z}\) belongs to \(\mathcal {C}^*\) if \(\varvec{z}=\varvec{U}\varvec{u}\) where \(\varvec{u}\ge \varvec{0}\). In a similar way the dual cone \(\mathcal {C}^{*0}\) is generated by the columns of \(\varvec{W}=-\varvec{H}^{\prime }\) and note that \(\varvec{U}^{\prime }\varvec{W} = -\varvec{I}\).

Within the euclidian metric, \(\mathfrak {R}^k\) can be partitioned into \(2^k\) convex cones as follows: let \(\mathcal {J}\) be the collection of all possible subsets of \((1, \dots , k)\), including the empty set and the whole set. For any pair \(\varvec{i},\,\varvec{j}\in \mathcal {J},\, \varvec{i}\cup \varvec{j} = (1, \dots , k)\), let \(\left( \varvec{U}_{{\varvec{i}}},\, \varvec{W}_{{\varvec{j}}}\right) \), be the matrix whose columns are, respectively, the columns of \(\varvec{U}\) with index in \(\varvec{i}\) and the columns of \(\varvec{W}\) with index in \(\varvec{j}\); the columns of this matrix generate the convex cone \(\mathcal {C}^*(\varvec{i})\) whose elements, when projected onto \(\mathcal {C}^*\), belong to the face generated by the columns of \(\varvec{U}_{{\varvec{i}}}\), this face is itself a convex cone of dimension equal to the cardinality \(|\varvec{i}|\) of \(\varvec{i}\). Thus

$$\begin{aligned} w_{i+q}(\varvec{V},\mathcal {C}) =w_i(\varvec{I},\mathcal {C}^*) =\sum _{\,|\,{\varvec{i}}\,|\,=i} P[\varvec{z}\in \mathcal {C}^*(\varvec{i})], \quad i=0,1,\ldots ,k \end{aligned}$$

where \(q\) is the dimension of \(\mathcal {L}_0\).

To compute \(P[\varvec{z}\in \mathcal {C}^*(\varvec{i})]\) note that \(\varvec{z}\in \mathcal {C}^*(\varvec{i})\) if and only if \(\varvec{t} = \left( \varvec{U}_{{\varvec{i}}},\, \varvec{W}_{{\varvec{j}}}\right) ^{-1}\varvec{z}\ge \varvec{0}\), in other words, the linear transformation above reduces \(\mathcal {C}^*(\varvec{i})\) into the positive orthant for the multivariate normal random variable \(\varvec{t}\); thus, to compute \(P[\varvec{t}\in \mathcal {R}^{k+}]\), the only quantity we need is \(Var(\varvec{t}) = \varvec{\varOmega }\). Let \(\varvec{\varPsi } = \varvec{W}^{\prime }\varvec{W}\) and \(\varvec{\varPhi } = (\varvec{U}^{\prime }\varvec{U})\) and note that \(\varvec{\varPsi } = \varvec{D}\varvec{V}\varvec{D}^{\prime }= \varvec{\varPhi }^{-1}\). It can be shown that \(\varvec{\varOmega }\) is block diagonal with elements given by \((\varvec{\varPhi }_{{\varvec{i}}{\varvec{i}}})^{-1}\) and \((\varvec{\varPsi }_{{\varvec{j}}{\varvec{j}}})^{-1}\), which are related by the well known formulas for the inverse of a partitioned matrix:

$$\begin{aligned} (\varvec{\varPhi }_{{\varvec{i}}{\varvec{i}}})^{-1}= & {} \varvec{\varPsi }_{{\varvec{i}}{\varvec{i}}}-\varvec{\varPsi }_{{\varvec{i}}{\varvec{j}}}(\varvec{\varPsi }_{{\varvec{j}}{\varvec{j}}})^{-1}\varvec{\varPsi }_{{\varvec{j}}{\varvec{i}}}\\ (\varvec{\varPsi }_{{\varvec{j}}{\varvec{j}}})^{-1}= & {} \varvec{\varPhi }_{{\varvec{j}}{\varvec{j}}}-\varvec{\varPhi }_{{\varvec{j}}{\varvec{i}}}(\varvec{\varPhi }_{{\varvec{i}}{\varvec{i}}})^{-1}\varvec{\varPhi }_{{\varvec{i}}{\varvec{j}}}. \end{aligned}$$

So, if \(\,|\,\varvec{i}\,|\,\le \,|\,j\,|\,\), it is convenient to compute \((\varvec{\varPhi }_{{\varvec{i}}{\varvec{i}}})^{-1}\) directly and \((\varvec{\varPsi }_{{\varvec{j}}{\varvec{j}}})^{-1}\) from the second expression above, instead, when \(\,|\,\varvec{i}\,|\,> \,|\,j\,|\,\), compute \((\varvec{\varPsi }_{{\varvec{j}}{\varvec{j}}})^{-1}\) directly and \((\varvec{\varPhi }_{{\varvec{i}}{\varvec{i}}})^{-1}\) from the first expression above. In any case, because \(\varvec{\varOmega }\) is block diagonal, \(P[\varvec{t}\in \mathcal {R}^{k+}]\) factorizes into the product of two lower dimensional integrals.

Because Proposition 3.6.1(3) in Silvapulle and Sen (2005) says that the weights with index \(j\) even or odd sum to 0.5, we may avoid computing the two weight which correspond to the largest number of side cones; these correspond to \((k/2-1,\,k/2)\) when \(k\) is even and to \(((k-1)/2,\,(k+1)/2)\) when \(k\) is odd.

Appendix 2: Simulations results

See Tables 3, 4 and 5.

Table 3 Likelihood ratio procedures in \(3\times 3 \) tables
Table 4 Likelihood ratio procedures in \(3\times 4\) tables
Table 5 Multiple comparisons procedures in \(3\times 3\) tables

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Colombi, R., Forcina, A. Testing order restrictions in contingency tables. Metrika 79, 73–90 (2016). https://doi.org/10.1007/s00184-015-0544-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00184-015-0544-x

Keywords

Navigation