Skip to main content
Log in

Exact likelihood inference for the two-parameter exponential distribution under Type-II progressively hybrid censoring

  • Published:
Metrika Aims and scope Submit manuscript

Abstract

Hybrid censoring schemes are commonly used in life-testing experiments to reduce the experimental time and the cost. A Type-II progressive hybrid censoring scheme (PHCS) was introduced by Kundu and Joarder (Comput Stat Data Anal 50:2509–2528, 2006) that combines progressive Type-II censoring and Type-I censoring. In this paper, we consider the statistical inference of a two-parameter exponential distribution under the Type-II PHCS. The conditional maximum likelihood estimates (MLEs) of the model parameters and their joint and marginal conditional moment generating functions are derived. Based on these exact conditional moments, bias-reduced estimators are proposed and their distributions are discussed. Confidence intervals of the model parameters based on exact and asymptotic distributions of the MLEs and bias-reduced estimators are developed. The performances of the point and interval estimation procedures are evaluated and compared through exact calculations and Monte Carlo simulations. Recommendations are made based on these results and an illustrative example is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bain LJ, Engelhardt M (1973) Interval estimation for the two-parameter double exponential distribution. Technometrics 15:875–887

    Article  MathSciNet  Google Scholar 

  • Balakrishnan N (2007) Progressive censoring methodology: an appraisal. TEST 16:211–296 (with Discussions)

    Article  MathSciNet  Google Scholar 

  • Balakrishnan N, Aggarwala R (2000) Progressive censoring: theory, methods, and applications. Birkhäuser, Boston

    Book  Google Scholar 

  • Balakrishnan N, Basu AP (1995) The exponential distribution: theory, methods and applications. Gordon and Breach, Newark, NJ

    Google Scholar 

  • Balakrishnan N, Childs A, Chandrasekar B (2002) An efficient computational method for moments of order statistics under progressive censoring. Stat Probab Lett 60:359–365

    Article  MathSciNet  Google Scholar 

  • Balakrishnan N, Cramer E (2014) The art of progressive censoring: applications to reliability and quality. Birkhäuser, New York

    Book  Google Scholar 

  • Balakrishnan N, Cramer E, Iliopoulos G (2014) On the method of pivoting the CDF for exact confidence intervals with illustration for exponential mean under life-test with time constraints. Stat Probab Lett 89:124–130

    Article  MathSciNet  Google Scholar 

  • Balakrishnan N, Kundu D (2013) Hybrid censoring: models, inferential results and applications. Comput Stat Data Anal 57:166–209

    Article  MathSciNet  Google Scholar 

  • Chen S, Bhattacharyya GK (1988) Exact confidence bounds for an exponential parameter under hybrid censoring. Commun Stat Theory Methods 17:1857–1870

    Article  MathSciNet  Google Scholar 

  • Childs A, Chandrasekar B, Balakrishnan N, Kundu D (2003) Exact likelihood inference based on Type-I and Type-II hybrid censored samples from the exponential distribution. Ann Inst Stat Math 55:319–330

    MathSciNet  Google Scholar 

  • Childs A, Chandrasekar B, Balakrishnan N (2008) Exact likelihood inference for an exponential parameter under progressive hybrid censoring schemes. In: Vonta F, Nikulin M, Limnios N, Huber-Carol C (eds) Statistical models and methods for biomedical and technical systems. Birhäuser, Boston, pp 323–334

    Google Scholar 

  • Childs A, Balakrishnan N, Chandrasekar B (2012) Exact distribution of the MLEs of the parameters and of the quantiles of two-parameter exponential distribution under hybrid censoring. Statistics 46:441–458

    MathSciNet  Google Scholar 

  • Cohen AC (1963) Progressively censored samples in life testing. Technometrics 5:327–329

    Article  MathSciNet  Google Scholar 

  • Cohen AC (1966) Life testing and early failure. Technometrics 8:539–549

    Article  Google Scholar 

  • Cramer E, Balakrishnan N (2013) On some exact distributional results based on Type-I progressively hybrid censored data from exponential distributions. Stat Methodol 10:128–150

    Article  MathSciNet  Google Scholar 

  • Epstein B (1954) Truncated life-test in exponential case. Ann Math Stat 25:555–564

    Article  Google Scholar 

  • Ganguly A, Mitra S, Samanta D, Kundu D (2012) Exact inference for the two-parameter exponential distribution under Type-II hybrid censoring. J Stat Plan Inference 142:613–625

    Article  MathSciNet  Google Scholar 

  • Iliopoulos G (2015) On exact confidence intervals in a competing risks model with generalized hybrid type-I censored exponential data. J Stat Comput Simul. doi:10.1080/00949655.2014.945931

  • Johnson NL, Kotz S, Balakrishnan N (1994) Continuous univariate distributions, vol 1, 2nd edn. Wiley, New York

    Google Scholar 

  • Kundu D, Joarder A (2006) Analysis of Type-II progressively hybrid censored data. Comput Stat Data Anal 50:2509–2528

    Article  MathSciNet  Google Scholar 

  • MIL-STD-781-C (1977) Reliability design qualification and production acceptance tests: exponential distribution. U.S. Government Printing Office, Washington, DC

  • Montanari GC, Cacciari M (1988) Progressively-censored aging tests on XLPE-insulated cable models. IEEE Trans Electr Insul 23:365–372

    Article  Google Scholar 

  • Meeker WQ, Escobar LA (1998) Statistical methods for reliability data. Wiley, New York

    Google Scholar 

  • R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

  • Thomas DR, Wilson WM (1972) Linear order statistic estimation for the two-parameter Weibull and extreme value distributions from Type-II progressively censored samples. Technometrics 14:679–691

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the editor and the anonymous reviewer for their constructive comments which led to this substantial improvement on an earlier version of the paper. This project was supported by The Chinese University of Hong Kong Faculty of Science Direct Grant (Project ID 4053023) and a Grant from the Simons Foundation (#280601 to Tony Ng).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hon Keung Tony Ng.

Appendix: Proof of Theorem 1

Appendix: Proof of Theorem 1

The explicit expression of the conditional mgf of \({\hat{\theta }}\) and \({\hat{\mu }}\) can be derived by using the following lemmas.

Lemma 1

$$\begin{aligned} \int \limits _{0<w_0<\cdots <w_{m}<T} \text{ e }^{-\sum \limits _{i=1}^ma_iw_i}dw_1\cdots dw_{m} =\sum \limits _{l=0}^m c_l^{(m)}\text{ e }^{-\sum \limits _{i=m-l+1}^ma_iT}. \end{aligned}$$

and

$$\begin{aligned} c_0^{(m)}&= \prod \limits _{j=1}^{m}\frac{1}{\sum \limits _{i=j}^{m}a_i}\\ c_l^{(m)}&= \frac{(-1)^l}{\prod \nolimits _{j=0}^{l-1}\sum \nolimits _{i=m-l+1}^{m-j}a_i}\prod \limits _{j=1}^{m-l}\frac{1}{\sum \nolimits _{i=j}^{m-l}a_i}, \quad \text{ for } 1\le l\le m. \end{aligned}$$

Proof

See Lemma 1 in Balakrishnan et al. (2002). \(\square \)

Lemma 2

$$\begin{aligned}&c_m\theta ^{-m}\text{ e }^{s\mu } \nonumber \\&\times \int \limits _{0\le x_1\le x_2\le \cdots \le x_{m}<T-\mu } \text{ e }^{-\left( \frac{1}{\theta }-\frac{t}{m}\right) \sum \limits _{i=2}^m(1+R_i)x_i- \left( \frac{1+R_1}{\theta }+\frac{R^*_1t}{m}-s \right) x_1}dx_1\cdots dx_{m}\nonumber \\&= p_0\left( 1-\frac{\theta t}{m}\right) ^{-m+1}\text{ e }^{\mu s}\left( 1- \frac{\theta s}{n} \right) ^{-1}\nonumber \\&+\sum \limits _{l=1}^{m-1} p_l\left( 1-\frac{\theta t}{m}\right) ^{-m}\left[ 1+\frac{\theta (R_{m-l}^*t-ms)}{m(n-R_{m-l}^*)}\right] ^{-1}\text{ e }^{T_l^*t+\mu s}\nonumber \\&+p_m\text{ e }^{Ts}\prod \limits _{j=1}^{m}\left[ \frac{1}{\theta }+\frac{R_{m-j}^*t-ms}{m(n-R_{m-j}^*)}\right] ^{-1}, \end{aligned}$$

\(p_{l}\) and \(T^*_{l}\) are defined by (7). \(\square \)

Proof

By using Lemma 1, we have

$$\begin{aligned}&c_m\theta ^{-m}\text{ e }^{s\mu } \\&\times \int \limits _{0\le x_1\le x_2\le \cdots \le x_{m}<T-\mu } \text{ e }^{-\left( \frac{1}{\theta }-\frac{t}{m}\right) \sum \nolimits _{i=2}^m(1+R_i)x_i-\left( \frac{1+R_1}{\theta }+\frac{R^*_1t}{m}-s\right) x_1}dx_1\cdots dx_{m}\\&= c_m\theta ^{-m}\text{ e }^{s\mu } \sum \limits _{l=0}^m c_l^{(m)}\text{ e }^{-\sum \limits _{i=m-l+1}^ma_i(T-\mu )}, \end{aligned}$$

where \(a_1 = \frac{1+R_1}{\theta }+\frac{R^*_1t}{m}-s, a_i = \left( \frac{1}{\theta }-\frac{t}{m}\right) (1+R_i), \text{ for } 2\le i\le m.\) For \(j=1\), we have

$$\begin{aligned} \sum \limits _{i=1}^{m}a_i&= {\left( \frac{1}{\theta }-\frac{t}{m} \right) }\sum \limits _{i=2}^{m}(1+R_i)+\frac{1+R_1}{\theta }+\frac{R^*_1t}{m}-s = \frac{n}{\theta }-s \end{aligned}$$

and for \(j \ge 2\), we have \( \sum \nolimits _{i=j}^{m}a_i = \left( \frac{1}{\theta }-\frac{t}{m} \right) \sum \nolimits _{i=j}^{m}(1+R_i) =\left( \frac{1}{\theta }-\frac{t}{m} \right) R_{j-1}^*.\) Thus,

$$\begin{aligned} c_0^{(m)}&= \prod \limits _{j=1}^{m}\frac{1}{\sum \nolimits _{i=j}^{m}a_i} ={\left\{ \prod \limits _{j=0}^{m-1}R_{j}^*\right\} ^{-1}}{\left( \frac{1}{\theta }-\frac{t}{m}\right) ^{-m+1}}{\left( \frac{1}{\theta }- \frac{s}{n}\right) ^{-1}, }\\ c_l^{(m)}&= \frac{(-1)^l}{\prod \limits _{j=0}^{l-1}\sum \nolimits _{i=m-l+1}^{m-j}a_i}\prod \limits _{j=1}^{m-l}\frac{1}{\sum \nolimits _{i=j}^{m-l}a_i}\\&= \frac{(-1)^l}{\prod \nolimits _{j=0}^{l-1}(\frac{1}{\theta }-\frac{t}{m})(R_{m-l}^*-R_{m-j}^*)} \prod \limits _{j=2}^{m-l}\frac{1}{(\frac{1}{\theta }-\frac{t}{m})(R_{j-1}^*-R_{m-l}^*)}\\&\times \frac{1}{\frac{n-R_{m-l}^*}{\theta }+\frac{R_{m-l}^*t}{m}-s}\\&= {\left\{ \prod \limits _{\mathop {j\ne m-l}\limits ^{j=0}}^{m}(R_{j}^*-R_{m-l}^*)\right\} ^{-1}} \\&\times {\left( \frac{1}{\theta }-\frac{t}{m}\right) ^{-m+1}}{\left[ \frac{1}{\theta }+\frac{R_{m-l}^*t-ms}{m(n-R_{m-l}^*)}\right] ^{-1}}, { \text{ for } } 1\le l< m,\\ c_m^{(m)}&= \frac{(-1)^m}{\prod \nolimits _{j=0}^{m-1}\sum \nolimits _{i=1}^{m-j}a_i}\\&= \frac{(-1)^m}{\prod \nolimits _{j=0}^{m-1}\left( \frac{n-R_{m-j}^*}{\theta }+\frac{R_{m-j}^*t}{m}-s \right) }\\&= {\left\{ \prod \limits _{j=1}^{m}(R_{j}^*-n)\right\} ^{-1} \prod \limits _{j=0}^{m-1}\left\{ \frac{1}{\theta }+\frac{R_{m-j}^*t-ms}{m(n-R_{m-j}^*)}\right\} ^{-1}.} \end{aligned}$$

Then, we can write

$$\begin{aligned}&c_m\theta ^{-m}\text{ e }^{s\mu } \\&\times \int \limits _{0\le x_1\le x_2\le \cdots \le x_{m}<T-\mu } \text{ e }^{-\left( \frac{1}{\theta }-\frac{t}{m}\right) \sum \nolimits _{i=2}^m(1+R_i)x_i-\left( \frac{1+R_1}{\theta }+\frac{R^*_1t}{m}-s \right) x_1}dx_1\cdots dx_{m}\\&= c_m\theta ^{-m}\text{ e }^{s\mu } \sum \limits _{l=0}^{m}c_l^{(m)}\text{ e }^{-\sum \nolimits _{i=m-l+1}^ma_i(T-\mu )}\\&= c_m\theta ^{-m}\text{ e }^{s\mu } c_0^{(m)}+\sum \limits _{l=1}^{m-1} c_m\theta ^{-m} c_l^{(m)}\text{ e }^{-(\frac{1}{\theta }-\frac{t}{m})R_{m-l}^*(T-\mu )+\mu s}\\&+c_m\theta ^{-m}c_m^{(m)}\text{ e }^{-\frac{n}{\theta }(T-\mu )+Ts} \\&= p_0\left( 1-\frac{\theta t}{m}\right) ^{-m+1}\text{ e }^{\mu s}\left( 1- \frac{\theta s}{n}\right) ^{-1}\\&+\sum \limits _{l=1}^{m-1} p_l\left( 1-\frac{\theta t}{m}\right) ^{-m}\left( 1+\frac{\theta (R_{m-l}^*t-ms)}{m(n-R_{m-l}^*)}\right) ^{-1}\text{ e }^{T_l^*t+\mu s}\\&+p_m\text{ e }^{Ts}\prod \limits _{j=0}^{m-1}\left\{ \frac{1}{\theta }+\frac{R_{m-j}^*t-ms}{m(n-R_{m-j}^*)}\right\} ^{-1}. \end{aligned}$$

\(\square \)

Lemma 3

$$\begin{aligned}&\sum \limits _{j=1}^{m-1} c_{j}\theta ^{-j} \text{ e }^{-\left( \frac{1}{\theta }-\frac{t}{j}\right) R_j^*(T-\mu )+s\mu }\nonumber \\&\times \int \limits _{0\le x_1\le x_2\le \cdots \le x_{j}<T-\mu } \text{ e }^{-\left( \frac{1}{\theta }-\frac{t}{j}\right) \sum \nolimits _{i=2}^{j}(1+R_i)x_i-\left( \frac{1+R_1}{\theta }+\frac{R^*_1t}{j}-s\right) x_1} dx_1\cdots dx_{j}\nonumber \\&= \sum \limits _{j=1}^{m-1} p_{j,0} \text{ e }^{T^*_{j,0}t+s\mu }\left( 1-\frac{\theta t}{j}\right) ^{-j+1} \left[ 1+\frac{\theta ({R_{j}^*t}-js)}{j(n-R_{j}^*)}\right] ^{-1}\nonumber \\&+\sum \limits _{j=1}^{m-1} \sum \limits _{l=1}^{j-1} p_{j,l} \text{ e }^{T^*_{j,l}t+s\mu } \left( 1-\frac{\theta t}{j}\right) ^{-j+1} \left[ 1+\frac{\theta ({R_{j-l}^*t}-js)}{j(n-R_{j-l}^*)}\right] ^{-1}\nonumber \\&+\sum \limits _{j=1}^{m-1}p_{j,j}\text{ e }^{Ts}\prod \limits _{j'=1}^{j}\left[ 1+\frac{\theta ({R_{j'}^*t}-js)}{j(n-R_{j'}^*)}\right] ^{-1} \end{aligned}$$

\(p_{j,l}\) and \(T^*_{j,l}\) are defined by (8). \(\square \)

Proof

By using Lemma 1, we have

where \(a_1 = \frac{1+R_1}{\theta }+\frac{R^*_1t}{j}-s, a_i = \left( \frac{1}{\theta }-\frac{t}{j} \right) (1+R_i), \text{ for } 2\le i\le j. \) For \(j'=1\), we have \( \sum \nolimits _{i=1}^{j}a_i = \frac{1}{\theta }(n-R_{j}^*)+\frac{R_{j}^*t}{j}-s\), and for \(j'\ge 2\), we have \(\sum \nolimits _{i=j'}^{j}a_i = \left( \frac{1}{\theta }-\frac{t}{j} \right) (R_{j'-1}^*-R_{j}^*).\) Thus,

$$\begin{aligned} c_0^{(j)}&= \prod \limits _{j'=1}^{j}\frac{1}{\sum \nolimits _{i=j'}^{j}a_i} = {\left\{ \prod \limits _{j'=0}^{j-1}(R_{j'}^*-R_{j}^*)\right\} ^{-1}\left( \frac{1}{\theta }-\frac{t}{j} \right) ^{-j+1} \left( \frac{1}{\theta }+\frac{{R_{j}^*t}-js}{j(n-R_{j}^*)}\right) ^{-1}}, \\ c_l^{(j)}&= \frac{(-1)^l}{\prod \nolimits _{j'=0}^{l-1}\sum \nolimits _{i=j-l+1}^{j-j'}a_i} \prod \limits _{j'=1}^{j-l}\frac{1}{\sum \nolimits _{i=j'}^{j-l}a_i}\\&= {\left\{ \prod \limits _{\mathop {j'\ne j-l}\limits ^{j'=0}}^{j}(R_{j'}^*-R_{j-l}^*)\right\} ^{-1}} \\&\times \left( \frac{1}{\theta }-\frac{t}{j}\right) ^{-j+1}{\left( \frac{1}{\theta }+\frac{{R_{j-l}^*t}-js}{j (n-R_{j-l}^*)}\right) ^{-1}}, \text{ for } 1 \le l \le j-1, \\ c_j^{(j)}&= \frac{(-1)^j}{\prod \nolimits _{j'=0}^{j-1}\sum \nolimits _{i=1}^{j-j'}a_i}\\&= {\left\{ \prod \limits _{j'=1}^{j}(R_{j'}^*-n)\right\} ^{-1} \prod \limits _{j'=1}^{j}\left( \frac{1}{\theta }+\frac{{R_{j'}^*t}-js}{j(n-R_{j'}^*)}\right) ^{-1}.} \end{aligned}$$

Therefore,

$$\begin{aligned}&\sum \limits _{j=1}^{m-1} c_{j}\theta ^{-j} \text{ e }^{-\left( \frac{1}{\theta }-\frac{t}{j}\right) R_j^*(T-\mu )+s\mu }\nonumber \\&\quad \quad \times \int \limits _{0\le x_1\le x_2\le \cdots \le x_{j}<T-\mu } \text{ e }^{-\left( \frac{1}{\theta }-\frac{t}{j}\right) \sum \nolimits _{i=2}^{j}(1+R_i)x_i-\left( \frac{1+R_1}{\theta }+\frac{R^*_1t}{j}-s \right) x_1} dx_1\cdots dx_{j}\nonumber \\&\quad =\sum \limits _{j=1}^{m-1} p_{j,0} \text{ e }^{T^*_{j,0}t+s\mu }\left( 1-\frac{\theta t}{j}\right) ^{-j+1} \left( 1+\frac{\theta ({R_{j}^*t}-js)}{j(n-R_{j}^*)}\right) ^{-1}\nonumber \\&\quad \quad +\sum \limits _{j=1}^{m-1} \sum \limits _{l=1}^{j-1} p_{j,l} \text{ e }^{T^*_{j,l}t+s\mu } \left( 1-\frac{\theta t}{j}\right) ^{-j+1} \left[ 1+\frac{\theta ({R_{j-l}^*t}-js)}{j(n-R_{j-l}^*)}\right] ^{-1}\nonumber \\&\quad \quad +\sum \limits _{j=1}^{m-1}p_{j,j}\text{ e }^{Ts}\prod \limits _{j'=1}^{j}\left[ 1+\frac{\theta ({R_{j'}^*t}-js)}{j(n-R_{j'}^*)}\right] ^{-1}. \end{aligned}$$

\(\square \)

Proof of Theorem 1

Condition on the values of \(D\) according to the different situations in Eq. (3), we have

$$\begin{aligned}&E\left[ \text{ e }^{t{\hat{\theta }}+s{\hat{\mu }}}|D>0\right] P\left( D>0\right) \nonumber \\&\quad = E\left[ \text{ e }^{t{\hat{\theta }}+s{\hat{\mu }}}|D\ge m\right] P\left( D\ge m\right) +\sum \limits _{j=1}^{m-1}E\left[ \text{ e }^{t{\hat{\theta }}+s{\hat{\mu }}}|D=j\right] P\left( D=j\right) \nonumber \\&\quad =\frac{c_m}{\theta ^{m}} \nonumber \\&\quad \quad \times \int \limits _{\mu \le x_1\le x_2\le \cdots \le x_{m}<T} \text{ e }^{-\left( \frac{1}{\theta }-\frac{t}{m}\right) \sum \limits _{i=2}^m(1+R_i)x_i-\left( \frac{1+R_1}{\theta }+\frac{R^*_1t}{m}-s \right) x_1+\frac{n\mu }{\theta }}dx_1\cdots dx_{m}\nonumber \\&\quad \quad +\sum \limits _{j=1}^{m-1} c_{j}\theta ^{-j}\text{ e }^{\frac{n\mu }{\theta }-(\frac{1}{\theta }-\frac{t}{j})R_j^*T}\nonumber \\&\quad \quad \times \int \limits _{\mu \le x_1\le x_2\le \cdots \le x_{j}<T} \text{ e }^{-\left( \frac{1}{\theta }-\frac{t}{j}\right) \sum \limits _{i=2}^{j}(1+R_i)x_i-\left( \frac{1+R_1}{\theta }+\frac{R^*_1t}{j}-s \right) x_1} dx_1\cdots dx_{j}.\nonumber \\&\quad =c_m\theta ^{-m}\text{ e }^{s\mu }\nonumber \\&\quad \quad \times \int \limits _{0\le x_1\le x_2\le \cdots \le x_{m}<T-\mu } \text{ e }^{-\left( \frac{1}{\theta }-\frac{t}{m}\right) \sum \nolimits _{i=2}^m(1+R_i)x_i-\left( \frac{1+R_1}{\theta }+\frac{R^*_1t}{m}-s \right) x_1}dx_1\cdots dx_{m}\nonumber \\&\quad \quad +\sum \limits _{j=1}^{m-1} c_{j}\theta ^{-j} \text{ e }^{-\left( \frac{1}{\theta }-\frac{t}{j}\right) R_j^*(T-\mu )+s\mu }\nonumber \\&\quad \quad \times \int \limits _{0\le x_1\le x_2\le \cdots \le x_{j}<T-\mu } \text{ e }^{-\left( \frac{1}{\theta }-\frac{t}{j}\right) \sum \nolimits _{i=2}^{j}(1+R_i)x_i-\left( \frac{1+R_1}{\theta }+\frac{R^*_1t}{j}-s \right) x_1} dx_1\cdots dx_{j}.\nonumber \\ \end{aligned}$$
(30)

Upon carrying out the integrations in the Eq. (30) by using Lemmas 2 and 3, we obtain the formula in Eq. (6) and hence Theorem 1 is proved. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chan, P.S., Ng, H.K.T. & Su, F. Exact likelihood inference for the two-parameter exponential distribution under Type-II progressively hybrid censoring. Metrika 78, 747–770 (2015). https://doi.org/10.1007/s00184-014-0525-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00184-014-0525-5

Keywords

Navigation