Skip to main content
Log in

Empirical likelihood for high-dimensional linear regression models

  • Published:
Metrika Aims and scope Submit manuscript

Abstract

High-dimensional data are becoming prevalent, and many new methodologies and accompanying theories for high-dimensional data analysis have emerged in response. Empirical likelihood, as a classical nonparametric method of statistical inference, has proved to possess many good features. In this paper, our focus is to investigate the asymptotic behavior of empirical likelihood for regression coefficients in high-dimensional linear models. We give regularity conditions under which the standard normal calibration of empirical likelihood is valid in high dimensions. Both random and fixed designs are considered. Simulation studies are conducted to check the finite sample performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Chen SX (1993) On the accuracy of empirical likelihood confidence regions for linear regression model. Ann Inst Stat Math 45:621–637

    Article  MATH  Google Scholar 

  • Chen SX, Cui HJ (2006) On Bartlett correction of empirical likelihood in the presence of nuisance parameters. Biometrika 93:215–220

    Article  MathSciNet  MATH  Google Scholar 

  • Chen SX, Van Keilegom I (2009) A review on empirical likelihood methods for regression. Test 18:415–447

    Article  MathSciNet  MATH  Google Scholar 

  • Chen SX, Peng L, Qin Y-L (2009) Effects of data dimension on empirical likelihood. Biometrika 96:1–12

    Article  MathSciNet  Google Scholar 

  • Chow YS, Teicher H (1997) Probability theory: independence, interchangeability, martingales. Springer, New York

    Book  MATH  Google Scholar 

  • Dharmadhikari SW, Jogdeo K (1969) Bounds on moments of certain random variables. Ann Math Stat 40:1506–1509

    Article  MathSciNet  MATH  Google Scholar 

  • DiCiccio TJ, Hall P, Romano JP (1991) Empirical likelihood is Bartlett-correctible. Ann Stat 19:1053–1061

    Article  MathSciNet  MATH  Google Scholar 

  • Goeman JJ, Van De Geer SA, Van Houwelingen HC (2006) Testing against a high dimensional alternative. J R Stat Soc B 68:477–493

    Article  MATH  Google Scholar 

  • Hjort NL, Mckeague IW, Van Keilegom I (2009) Extending the scop of empirical likelihood. Ann Stat 37:1079–1111

    Article  MATH  Google Scholar 

  • Leng C, Tang CY (2012) Penalized empirical likelihood and growing dimensional general estimationg equations. Biometrika 99:703–716

    Article  MathSciNet  MATH  Google Scholar 

  • Li GR, Lin L, Zhu LX (2012) Empirical likelihood for a varying coefficients partially linear model with diverging number of parameters. J Mult Anal 105:85–111

    Article  MathSciNet  MATH  Google Scholar 

  • Liu Y, Zou C, Wang Z (2013) Calibration of the empirical likelihood for high-dimensional data. Ann Inst Stat Math 69:529–550

    Article  MathSciNet  Google Scholar 

  • Owen AB (1988) Empirical likelihood ratio confidence intervals for a single functional. Biometrika 75: 237–249

    Google Scholar 

  • Owen AB (1990) Empirical likelihood ratio confidence regions. Ann Stat 18:90–120

    Article  MathSciNet  MATH  Google Scholar 

  • Owen AB (1991) Empirical likelihood for linear models. Ann Stat 19:1725–1747

    Article  MathSciNet  MATH  Google Scholar 

  • Owen AB (2001) Empirical likelihood. Chapman & Hall/CRC, New York

    Book  MATH  Google Scholar 

  • Portnoy S (1988) Asymptotic behavior of likelihood methods for exponential familyies when the numbers of parameters tends to infinity. Ann Stat 16:356–366

    Article  MathSciNet  MATH  Google Scholar 

  • Tang CY, Leng C (2010) Penalized high-dimensional empirical likelihood. Biometrika 97:905–920

    Article  MathSciNet  MATH  Google Scholar 

  • Tsao M (2004) Bounds on coverage probabilities of the empirical likelihood ratio confidence regions. Ann Stat 32:1215–1221

    Article  MathSciNet  MATH  Google Scholar 

  • Wilks SS (1938) The large-sample distribution of the likelihood ratio for testing component hypotheses. Ann Math Stat 9:60–62

    Article  Google Scholar 

  • Zhong PS, Chen SX (2011) Tests for high-dimensional regression coefficients with factorial designs. J Am Stat Assoc 106:260–274

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Editor and an anonymous referee for their many helpful comments that have resulted in significant improvements in the article. This research is supported by the NNSF of China Grants No. 11071128, 11131002, 11101306, 11371202, 71202087, 11271169, the RFDP of China Grant No. 20110031110002, Foundation for the Author of National Excellent Doctoral Dissertation of PR China H0512101, New Century Excellent Talents in University NCET-12-0276 and PAPD of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaojun Wang.

Appendix: Proofs of Propositions 1, 2 and 3

Appendix: Proofs of Propositions 1, 2 and 3

Before proving Propositions 1, 2 and 3, we present some auxiliary lemmas. Let \(L_{n}\equiv \max _{1\le i,j\le n}\mid \widetilde{S}_{n,i,j}-V_{n,i,j}\mid \) be the largest absolute element of \(\widetilde{\varvec{S}}_{n}-\varvec{V}_{n}\) with \(\widetilde{\varvec{S}}_{n}=\frac{1}{n}\sum _{i=1}^{n}\varvec{Z}_{i}\varvec{Z}_{i}^\mathsf{T}\) and \(\varvec{V}_{n}=\frac{1}{n}\sum _{i=1}^{n}\text{ Var }(\varvec{Z}_{i})=\frac{\sigma ^2}{n}\varvec{XX}^\mathsf{T}\). Let \(\mathcal {M}(\varvec{A})\) denote the largest absolute element of matrix \(\varvec{A}\). For convenience, define \((\varvec{A})_{ij}\) and \((\varvec{a})_{i}\) as the \((i,j)\) element of a matrix \(\varvec{A}\) and the \(i\)th component of a vector \(\varvec{a}\), respectively. To avoid confusion, we state here that the auxiliary variable \(\varvec{Z}_{i}\) appeared in the following arguments and formulas is that for fixed design case.

Lemma 1

Assume Conditions \(1^{'}\) and \(2^{'}\). Then, for any given \(\varepsilon >0\) and some positive constant \(C_{q}\) only depending on \(q\),

$$\begin{aligned} \hbox {{P}}(L_{n}\ge \varepsilon )<C_{q}K_{1}^{2}K_{2}\frac{p^2}{n^{q/2}\varepsilon ^{q}}. \end{aligned}$$

Proof

Let \(\varvec{R}_{n}=\widetilde{\varvec{S}}_{n}-\varvec{V}_{n}\mathop {=}\limits ^{\wedge }(R_{jk})_{p\times p}\) with \(R_{jk}=\frac{1}{n}\sum _{i=1}^{n}x_{ij}x_{ik}(\epsilon _{i}^{2}-\sigma ^{2}),\, j,k=1,\ldots ,p\). We have

$$\begin{aligned} \text{ P }(|R_{jk}|\ge \varepsilon )\le \frac{\text{ E }|\sqrt{n}R_{jk}|^{q}}{(\sqrt{n}\varepsilon )^{q}} =\frac{n^{-\frac{q}{2}}\text{ E }|\sum _{i=1}^{n}x_{ij}x_{ik}(\epsilon _{i}^{2}-\sigma ^{2})|^{q}}{n^{q/2}\varepsilon ^{q}}. \end{aligned}$$

Let \(W_{ijk}=x_{ij}x_{ik}(\epsilon _{i}^{2}-\sigma ^{2})\), \(1\le i\le n\) and \(j, k=1, 2, \ldots , p\). Obviously, for any fixed \(j, k\), the \(W_{ijk}\)’s are independent but not identically distributed random variables with mean zero. By the Theorem 2 of Dharmadhikari and Jogdeo (1969), we have

$$\begin{aligned} \text{ E }\left| \sum _{i=1}^{n}W_{ijk}\right| ^{q}\le C_{q}n^{q/2-1}\sum _{i=1}^{n}\text{ E }|W_{ijk}|^{q} \le C_{q}\text{ E }|\epsilon _{1}|^{2q}n^{q/2-1}\sum _{i=1}^{n}|x_{ij}|^{q}|x_{ik}|^{q}, \end{aligned}$$

where \(C_{q}\) is a finite positive constant only depending on \(q\). This leads to

$$\begin{aligned} \text{ P }(|R_{jk}|\ge \varepsilon ) \le C_{q}\text{ E }|\epsilon _{1}|^{2q}\frac{\frac{1}{n}\sum _{i=1}^{n}|x_{ij}|^{q}|x_{ik}|^{q}}{n^{q/2}\varepsilon ^{q}}. \end{aligned}$$

Therefore, by Conditions \(1^{'}\) and \(2^{'}\), we obtain

$$\begin{aligned} \text{ P }(L_{n}\ge \varepsilon )&\le \sum _{j,k=1}^{p}\text{ P }(|R_{jk}|\ge \varepsilon )\\&\le C_{q}\text{ E }|\epsilon _{1}|^{2q}p^{2}\frac{\frac{1}{n}\sum _{i=1}^{n}(p^{-1}\sum _{j=1}^{p}|x_{ij}|^{q})(p^{-1} \sum _{j=1}^{p}|x_{ik}|^{q})}{n^{q/2}\varepsilon ^{q}}\\&< C_{q}K_{1}^{2}K_{2}\frac{p^{2}}{n^{q/2}\varepsilon ^{q}}\,. \end{aligned}$$

\(\square \)

Lemma 2

$$\begin{aligned} \max _{1\le i\le p}|\gamma _{i}(\varvec{V}_{n})-\gamma _{i}(\widetilde{\varvec{S}}_{n})|\le pL_{n} \end{aligned}$$

Proof

The proof follows a similar line to that of Lemma 2 in Appendix A of Liu et al. (2013) and we refer to that for details. \(\square \)

According to Lemma 1 and Conditions \(1^{'}\) and \(2^{'}\), we have

$$\begin{aligned} \text{ P }(pL_{n}\ge \varepsilon )\le C_{q}K_{1}^{2}K_{2}\frac{p^{2+q}}{n^{q/2}\varepsilon ^{q}}, \end{aligned}$$

which, together with Condition 4, leads to \(pL_{n}=o_{p}(1)\). This means that the eigenvalues of \(\widetilde{\varvec{S}}_{n}\) are close to those of \(\varvec{V}_{n}\).

Summarizing the results of Lemmas 1 and 2, we have the following Corollary:

Corollary 2

Suppose Conditions \(1^{'}\), \(2^{'}\) and \(4\), then \(c_{3}<\gamma _{p}(\widetilde{\varvec{S}}_{n})\le \gamma _{1}(\widetilde{\varvec{S}}_{n})<c_{4}\) holds with probability tending to one as \(n\rightarrow \infty \).

In order to prove \(\sup _{1\le i\le n}|\varvec{\lambda }^\mathsf{T}\varvec{Z}_{i}|=o_{p}(1)\) for the Taylor expansions of (4) and (5), we need the following lemma. Let \(\rho _{n}\equiv \max _{1\le i\le n}\Vert \varvec{Z}_{i}\Vert \).

Lemma 3

Assume Conditions \(1^{'}\) and \(2^{'}\), then

$$\begin{aligned} \rho _{n}=o_{p}(n^{1/q}p^{1/2}). \end{aligned}$$

Proof

It is easy to see that

$$\begin{aligned} \rho _{n}&= \max _{1\le i\le n}\big \{\Vert \varvec{Z}_{i}\Vert ^{q/2}-\text{ E }\Vert \varvec{Z}_{i}\Vert ^{q/2}+\text{ E }\Vert \varvec{Z}_{i}\Vert ^{q/2}\big \}^{2/q}\\&\le \left\{ \max _{1\le i\le n}\big |\Vert \varvec{Z}_{i}\Vert ^{q/2}-\text{ E }\Vert \varvec{Z}_{i}\Vert ^{q/2}\big |+\text{ E }|\epsilon _{1}|^{q/2}\max _{1\le i\le n}\Vert \varvec{x}_{i}\Vert ^{q/2}\right\} ^{2/q}. \end{aligned}$$

Applying \(C_{p}\) inequality twice, we have \(\Vert \varvec{x}_{i}\Vert ^{q/2}\le p^{q/4}\big (\sum _{j=1}^{p}p^{-1}|x_{ij}|^{q}\big )^{1/2}\le p^{q/4}K_{1}^{1/2}\). Thus, \(\max _{1\le i\le n}\Vert \varvec{x}_{i}\Vert ^{q/2}=O(p^{q/4})\).

On the other hand, according to Condition \(2^{'}\) and the Lemma 3 of Owen (1990), which continues to hold for independent but not identically distributed random variables, we get

$$\begin{aligned}&\max _{1\le i\le n}\big |\Vert \varvec{Z}_{i}\Vert ^{q/2}-\text{ E }\Vert \varvec{Z}_{i}\Vert ^{q/2}\big |\\&\quad \le \max _{1\le i\le n}\left\{ \frac{\big |\Vert \varvec{Z}_{i}\Vert ^{q/2}-\text{ E }\Vert \varvec{Z}_{i}\Vert ^{q/2}\big |}{\big [\text{ Var }(\Vert \varvec{Z}_{i}\Vert ^{q/2})\big ]^{1/2}}\right\} \max _{1\le i\le n}\big \{\text{ Var }(\Vert \varvec{Z}_{i}\Vert ^{q/2})\big \}^{1/2}\\&\quad \le \max _{1\le i\le n}\left\{ \frac{\big |\Vert \varvec{Z}_{i}\Vert ^{q/2}-\text{ E }\Vert \varvec{Z}_{i}\Vert ^{q/2}\big |}{\big [\text{ Var }(\Vert \varvec{Z}_{i}\Vert ^{q/2})\big ]^{1/2}}\right\} \max _{1\le i\le n}\big \{\Vert \varvec{x}_{i}\Vert ^{q/2}\big \}(\text{ E }|\epsilon _{1}|^{q})^{1/2}\\&\quad =o_{p}(n^{1/2})O(p^{q/4})=o_{p}(n^{1/2}p^{q/4}). \end{aligned}$$

The last second equality is due to Lemma 3 of Owen (1990) and Condition \(2^{'}\).

Summarizing the above, we obtain \(\rho _{n}=\big \{o_{p}(n^{1/2}p^{q/4})+O(p^{q/4})\big \}^{2/q}=o_{p}(n^{1/q}p^{1/2})\). \(\square \)

Lemma 4

If Conditions \(1^{'}\), \(2^{'}\) and \(3^{'}\) hold, then

$$\begin{aligned} \sup _{1\le i\le n}|\varvec{\lambda }^\mathsf{T}\varvec{Z}_{i}|=o_{p}(1),\quad \lambda =\widetilde{\varvec{S}}_{n}^{-1}(\bar{\varvec{Z}}_{n}+\varvec{\zeta }_{n}), \end{aligned}$$

where \(\bar{\varvec{Z}}_{n}=O_{p}(p^{1/2}n^{-1/2})\) and \(\varvec{\zeta }_{n}=o_{p}(n^{\frac{1-q}{q}}p^{3/2})\).

Proof

Let \(\varvec{\lambda }=\Vert \varvec{\lambda }\Vert \varvec{\vartheta }\), where \(\varvec{\vartheta }\) is a unit vector. Then we get from (5) that

$$\begin{aligned} \frac{1}{n}\sum _{i=1}^{n}\frac{\varvec{\vartheta }^\mathsf{T}\varvec{Z}_{i}}{1+\Vert \varvec{\lambda }\Vert \varvec{\vartheta }^\mathsf{T}\varvec{Z}_{i}}=0. \end{aligned}$$

It follows that

$$\begin{aligned} 0=\frac{1}{n}\sum _{i=1}^{n}\frac{\varvec{\vartheta }^\mathsf{T}\varvec{Z}_{i}}{1+\Vert \varvec{\lambda }\Vert \varvec{\vartheta }^\mathsf{T}\varvec{Z}_{i}} =\frac{1}{n}\sum _{i=1}^{n}\varvec{\vartheta }^\mathsf{T}\varvec{Z}_{i}-\frac{\Vert \varvec{\lambda }\Vert \frac{1}{n}\sum _{i=1}^{n}\varvec{\vartheta }^\mathsf{T}\varvec{Z}_{i}\varvec{Z}_{i}^\mathsf{T}\varvec{\vartheta }}{1+\Vert \varvec{\lambda }\Vert \varvec{\vartheta }^\mathsf{T}\varvec{Z}_{i}}. \end{aligned}$$

Since

$$\begin{aligned} 0<1+\Vert \varvec{\lambda }\Vert \varvec{\vartheta }^\mathsf{T}\varvec{Z}_{i}\le 1+\Vert \varvec{\lambda }\Vert \max _{1\le i\le n}\Vert \varvec{Z}_{i}\Vert =1+\Vert \varvec{\lambda }\Vert \rho _{n}, \end{aligned}$$

hence

$$\begin{aligned} \frac{1}{n}\sum _{i=1}^{n}\varvec{\vartheta }^\mathsf{T}\varvec{Z}_{i}-\frac{\Vert \varvec{\lambda }\Vert \frac{1}{n}\sum _{i=1}^{n}\varvec{\vartheta }^\mathsf{T}\varvec{Z}_{i}\varvec{Z}_{i}^\mathsf{T}\varvec{\vartheta }}{1+\Vert \varvec{\lambda }\Vert \varvec{\vartheta }^\mathsf{T}\varvec{Z}_{i}} \le \varvec{\vartheta }^\mathsf{T}\bar{\varvec{Z}}_{n}-\frac{\Vert \varvec{\lambda }\Vert }{1+\Vert \varvec{\lambda }\Vert \rho _{n}}\varvec{\vartheta }^\mathsf{T}\widetilde{\varvec{S}}_{n}\varvec{\vartheta }, \end{aligned}$$

which leads to \(\varvec{\vartheta }^\mathsf{T}\bar{\varvec{Z}}_{n}(1+\Vert \varvec{\lambda }\Vert \rho _{n})\ge \varvec{\vartheta }^\mathsf{T}\widetilde{\varvec{S}}_{n}\varvec{\vartheta }\Vert \varvec{\lambda }\Vert \) and then \(\Vert \varvec{\lambda }\Vert (\varvec{\vartheta }^\mathsf{T}\widetilde{\varvec{S}}_{n}\varvec{\vartheta }-\varvec{\vartheta }^\mathsf{T}\bar{\varvec{Z}}_{n}\rho _{n})\le \varvec{\vartheta }^\mathsf{T}\bar{\varvec{Z}}_{n}\) follows.

Furthermore, we note that

$$\begin{aligned} \text{ E }(\bar{\varvec{Z}}_{n}^\mathsf{T}\bar{\varvec{Z}}_{n})&= \frac{1}{n^{2}}\sum _{i,j=1}^{n}\varvec{x}_{i}^\mathsf{T}\varvec{x}_{j}\text{ E }(\epsilon _{i}\epsilon _{j})\\&= \frac{\sigma ^{2}}{n}\text{ tr }\left( \frac{1}{n}\varvec{X}^\mathsf{T}\varvec{X}\right) =\frac{\sigma ^{2}}{n}\text{ tr }\Big (\frac{1}{n}\varvec{XX}^\mathsf{T}\Big )\\&\le \frac{p}{n^{2}}\sum _{i=1}^{n}\gamma _{1}(\varvec{x}_{i}\varvec{x}_{i}^\mathsf{T}\sigma ^{2}) <\frac{p}{n}c_{4}\\&= O\Big (\frac{p}{n}\Big ), \end{aligned}$$

which implies that \(\bar{\varvec{Z}}_{n}=O_{p}(p^{1/2}n^{-1/2})\).

Since \(\Vert \varvec{\vartheta }^\mathsf{T}\bar{\varvec{Z}}_{n}\Vert \le \Vert \bar{\varvec{Z}}_{n}\Vert \), hence \(\varvec{\vartheta }^\mathsf{T}\bar{\varvec{Z}}_{n}=O_{p}(p^{1/2}n^{-1/2})\) and \(\varvec{\vartheta }^\mathsf{T}\bar{\varvec{Z}}_{n}\rho _{n}=o_{p}(1)\). Notice that \(\varvec{\vartheta }^\mathsf{T}\widetilde{\varvec{S}}_{n}\varvec{\vartheta }\ge \gamma _{p}(\widetilde{\varvec{S}}_{n})>c_{3}\) holds with probability tending to one as \(n\rightarrow \infty \). Therefore, we have \(\Vert \varvec{\lambda }\Vert =O_{p}(|\varvec{\vartheta }^\mathsf{T}\bar{\varvec{Z}}_{n}|/c_{3})=O_{p}(\Vert \bar{\varvec{Z}}_{n}\Vert )=O_{p}(p^{1/2}n^{-1/2})\) and \(\sup _{1\le i\le n}|\varvec{\lambda }^\mathsf{T}\varvec{Z}_{i}|=O_{p}(pn^{\frac{2-q}{2q}})=o_{p}(1)\). This enables us to expand (5) to get \(\bar{\varvec{Z}}_{n}-\widetilde{\varvec{S}}_{n}\varvec{\lambda }+\varvec{\zeta }_{n}=\varvec{0}\) with \(\varvec{\zeta }_{n}=\frac{1}{n}\sum _{i=1}^{n}\varvec{Z}_{i}(\varvec{\lambda }^\mathsf{T}\varvec{Z}_{i})^{2}(1+o_{p}(1))\). Then we derive \(\varvec{\lambda }=\widetilde{\varvec{S}}_{n}^{-1}(\bar{\varvec{Z}}_{n}+\varvec{\zeta }_{n})\). In addition, it is easy to see that

$$\begin{aligned} \Vert \varvec{\zeta }_{n}\Vert&\le \frac{2}{n}\sum _{i=1}^{n}\Vert \varvec{Z}_{i}\Vert |\varvec{\lambda }^\mathsf{T}\varvec{Z}_{i}|^{2} \le \frac{2}{n}\sum _{i=1}^{n}\rho _{n}\varvec{\lambda }^\mathsf{T}\varvec{Z}_{i}\varvec{Z}_{i}^\mathsf{T}\varvec{\lambda } \le 2\rho _{n}\Vert \varvec{\lambda }\Vert ^{2}\gamma _{1}(\widetilde{\varvec{S}}_{n})\\&= \rho _{n}\Vert \varvec{\lambda }\Vert ^{2}O_{p}(\gamma _{1}(\varvec{V}_{n})) =O_{p}(\rho _{n}\Vert \varvec{\lambda }\Vert ^{2}) =O_{p}(o_{p}(n^{1/q}p^{1/2})O_{p}(p/n))\\&= o_{p}(n^{\frac{1-q}{q}}p^{3/2}). \end{aligned}$$

Furthermore, we get from the last second equality that

$$\begin{aligned} O_{p}(o_{p}(n^{1/q}p^{1/2})O_{p}(p/n))=O_{p}(o_{p}(n^{1/q}p^{1/2})\bar{\varvec{Z}}_{n}p^{1/2}n^{-1/2})=\bar{\varvec{Z}}_{n}o_{p}(1). \end{aligned}$$

It follows that \(\varvec{\zeta }_{n}=\bar{\varvec{Z}}_{n}o_{p}(1)\). \(\square \)

Lemma 5

Suppose Conditions \(1^{'}\), \(2^{'}\) and 4, then

$$\begin{aligned} (\widetilde{\varvec{S}}_{n}-\varvec{V}_{n}^{-1})\bar{\varvec{Z}}_{n}=(\varvec{V}_{n}^{-1}\bar{\varvec{Z}}_{n})o_{p}(1). \end{aligned}$$

Proof

Note firstly that \(\gamma _{1}(\widetilde{\varvec{S}}_{n}^{-1})<1/c_{3}\) with probability tending to one as \(n\rightarrow \infty \). Applying Lemma 2 we have

$$\begin{aligned} \Vert \varvec{V}_{n}(\widetilde{\varvec{S}}_{n}^{-1}-\varvec{V}_{n}^{-1})\bar{\varvec{Z}}_{n}\Vert&= \Vert (\varvec{V}_{n}-\widetilde{\varvec{S}}_{n})\widetilde{\varvec{S}}_{n}^{-1}\bar{\varvec{Z}}_{n}\Vert =\left[ \bar{\varvec{Z}}_{n}\widetilde{\varvec{S}}_{n}^{-1}(\varvec{V}_{n}-\widetilde{\varvec{S}}_{n})^{2}\widetilde{\varvec{S}}_{n}^{-1}\bar{\varvec{Z}}_{n}\right] ^{1/2}\\&\le \Vert \bar{\varvec{Z}}_{n}\Vert \gamma _{1}(\widetilde{\varvec{S}}_{n}^{-1})\max _{1\le i\le n}|\gamma _{i}(\varvec{V}_{n}-\widetilde{\varvec{S}}_{n})| \le \Vert \bar{\varvec{Z}}_{n}\Vert \gamma _{1}(\widetilde{\varvec{S}}_{n}^{-1})pL_{n}\\&= \Vert \bar{\varvec{Z}}_{n}\Vert O_{p}(pL_{n}) =\Vert \bar{\varvec{Z}}_{n}\Vert o_{p}(1), \end{aligned}$$

which implies that \((\widetilde{\varvec{S}}_{n}^{-1}-\varvec{V}_{n}^{-1})\bar{\varvec{Z}}_{n}=(\varvec{V}_{n}^{-1}\bar{\varvec{Z}}_{n})o_{p}(1)\). \(\square \)

The following result is a direct consequence of Lemmas 4 and 5.

Corollary 3

Under Conditions \(1^{'}\), \(2^{'}\), \(3^{'}\) and 4, we have

$$\begin{aligned} \varvec{\lambda }=\varvec{V}_{n}^{-1}\bar{\varvec{Z}}_{n}(1+o_{p}(1)). \end{aligned}$$

1.1 Proof of Proposition 1

Review that we have shown previously \(\sup _{1\le i\le n}\varvec{\lambda }^\mathsf{T}\varvec{Z}_{i}=o_{p}(1)\), hence we can expand (4) as follows:

$$\begin{aligned} l_{n}(\varvec{\beta }_{0})&= 2\sum _{i=1}^{n}\left\{ \varvec{\lambda }^\mathsf{T}\varvec{Z}_{i}-\frac{1}{2}\varvec{\lambda }^\mathsf{T}\varvec{Z}_{i}\varvec{Z}_{i}^\mathsf{T}\varvec{\lambda }+\frac{1}{3}(\varvec{Z}_{i}^\mathsf{T}\varvec{\lambda })^{3}(1+o_{p}(1))\right\} \\&= n\left\{ 2\bar{\varvec{Z}}_{n}^\mathsf{T}\varvec{\lambda }-\varvec{\lambda }^\mathsf{T}\widetilde{\varvec{S}}_{n}\varvec{\lambda }\right\} +\varGamma _{1}, \end{aligned}$$

where \(\varGamma _{1}=\frac{2}{3}\sum _{i=1}^{n}(\varvec{Z}_{i}^\mathsf{T}\varvec{\lambda })^{3}(1+o_{p}(1))\). By substituting \(\varvec{\lambda }\) for \(\widetilde{\varvec{S}}_{n}^{-1}(\bar{\varvec{Z}}_{n}+\varvec{\zeta }_{n})\) in the expression above, we get

$$\begin{aligned} l_{n}(\varvec{\beta }_{0})=n\bar{\varvec{Z}}_{n}^\mathsf{T}\widetilde{\varvec{S}}_{n}^{-1}\bar{\varvec{Z}}_{n}+\varGamma _{1}-\varGamma _{2}, \end{aligned}$$

where \(\varGamma _{2}=n\varvec{\zeta }_{n}^\mathsf{T}\widetilde{\varvec{S}}_{n}^{-1}\varvec{\zeta }_{n}\). It is clear that the result of Proposition 1 is followed if we can prove that \(\varGamma _{1}=o_{p}(\sqrt{p})\) and \(\varGamma _{2}=o_{p}(\sqrt{p})\).

Indeed, according to Corollary 2 we have

$$\begin{aligned} \varvec{Z}_{i}^\mathsf{T}\varvec{\lambda }=\varvec{Z}_{i}^\mathsf{T}\varvec{V}_{n}^{-1}\bar{\varvec{Z}}_{n}(1+o_{p}(1)). \end{aligned}$$

This, together with the proof of Lemma 4, leads to \(\varGamma _{1}=\frac{2}{3}\sum _{i=1}^{n}(\varvec{Z}_{i}^\mathsf{T}\varvec{V}_{n}^{-1}\bar{\varvec{Z}}_{n})^{3}(1+o_{p}(1))\) and \(\varvec{\zeta }_{n}=\frac{1}{n}\sum _{i=1}^{n}\varvec{Z}_{i}(\varvec{Z}_{i}^\mathsf{T}\varvec{V}_{n}^{-1}\bar{\varvec{Z}}_{n})^{2}(1+o_{p}(1))\). On the other hand, we note that \(\varGamma _{2}=n\varvec{\zeta }_{n}^\mathsf{T}(\widetilde{\varvec{S}}_{n}^{-1}-\varvec{V}_{n}^{-1})\varvec{\zeta }_{n}+n\varvec{\zeta }_{n}^\mathsf{T}\varvec{V}_{n}^{-1}\varvec{\zeta }_{n}\). Similar to Lemma 5, we can prove that \((\widetilde{\varvec{S}}_{n}^{-1}-\varvec{V}_{n}^{-1})\varvec{\zeta }_{n}=\varvec{V}_{n}^{-1}\varvec{\zeta }_{n}o_{p}(1)\). Therefore we get \(\varGamma _{2}=n\varvec{\zeta }_{n}^\mathsf{T}\varvec{V}_{n}^{-1}\varvec{\zeta }_{n}(1+o_{p}(1))\).

It is not difficult to see that we can rewrite \(\varGamma _{1}\) and \(\varGamma _{2}\) as

$$\begin{aligned} \varGamma _{1}&= \frac{2n}{3}\sum _{i,j,k=1}^{p}\bar{\alpha }^{ijk}\bar{A}^{i}\bar{A}^{j}\bar{A}^{k}(1+o_{p}(1)),\\ \varGamma _{2}&= n\sum _{i,j,k,r,s=1}^{p}\bar{\alpha }^{ijk}\bar{\alpha }^{irs}\bar{A}^{j}\bar{A}^{k}\bar{A}^{r}\bar{A}^{s}(1+o_{p}(1)). \end{aligned}$$

With tedious calculation we further obtain

$$\begin{aligned} \text{ E }\bigg (\frac{2n}{3}\sum _{i,j,k=1}^{p}\bar{\alpha }^{ijk}\bar{A}^{i}\bar{A}^{j}\bar{A}^{k}\bigg )&= \frac{4}{3n}\sum _{i,j,k=1}^{p}(3\bar{\alpha }^{ijj}\bar{\alpha }^{ikk}+2\bar{\alpha }^{ijk}\bar{\alpha }^{ijk})(1+o(1)),\\ \text{ E }\bigg (n\sum _{i,j,k,r,s=1}^{p}\bar{\alpha }^{ijk}\bar{\alpha }^{irs}\bar{A}^{j}\bar{A}^{k}\bar{A}^{r}\bar{A}^{s}\bigg )&= \frac{1}{n}\sum _{i,j,k=1}^{p}(2\bar{\alpha }^{ijk}\bar{\alpha }^{ijk}+\bar{\alpha }^{ijj}\bar{\alpha }^{ikk})(1+o(1)). \end{aligned}$$

Recalling that \((\varvec{A})_{ij}\) denotes the \((i,j)\) element of a matrix \(\varvec{A}\) and \((\varvec{a})_{i}\) the \(i\)th component of a vector \(\varvec{a}\). Since

$$\begin{aligned} \text{ E }\big |\xi _{rk}|^{2} =\text{ E }|(\varvec{V}_{n}^{-1/2}\varvec{Z}_{r})_{k}\big |^{2} =\big (\varvec{V}_{n}^{-1/2}\varvec{x}_{r}\varvec{x}_{r}^\mathsf{T}\varvec{V}_{n}^{-1/2}\big )_{kk}\sigma ^{2}. \end{aligned}$$

Hence, Using \(C_{p}\) inequality, Cauchy-Schwartz inequality, Young inequality and Lemma 4 of Liu et al. (2013), we can verify that

$$\begin{aligned} \bigg |\sum _{i,j,k=1}^{p}\bar{\alpha }^{ijk}\bar{\alpha }^{ijk}\bigg |\le \frac{c_{4}}{c_{3}}p\sum _{i,j=1}^{p}\bar{\alpha }^{iijj}\quad \text{ and }\quad \bigg |\sum _{i,j,k=1}^{p}\bar{\alpha }^{ijj}\bar{\alpha }^{ikk}\bigg |\le \frac{c_{4}}{c_{3}}p\sum _{i,j=1}^{p}\bar{\alpha }^{iijj}. \end{aligned}$$

Summarizing the arguments above, together with Condition \(6^{'}\), we get

$$\begin{aligned} \text{ E }\bigg (\frac{2n}{3}\sum _{i,j,k=1}^{p}\bar{\alpha }^{ijk}\bar{A}^{i}\bar{A}^{j}\bar{A}^{k}\bigg )^{2} \le \frac{c_{4}}{c_{3}}\frac{20p}{3n}\sum _{i,j}^{p}\bar{\alpha }^{iijj}(1+o(1)) =O(p^{3}/n), \end{aligned}$$

and

$$\begin{aligned} \text{ E }\bigg (n\sum _{i,j,k,r,s=1}^{p}\bar{\alpha }^{ijk}\bar{\alpha }^{irs}\bar{A}^{j}\bar{A}^{k}\bar{A}^{r}\bar{A}^{s}\bigg ) \le \frac{3p}{n}\frac{c_{4}}{c_{3}}\bar{\alpha }^{iijj}(1+o(1)) =O(p^{3}/n), \end{aligned}$$

which means that \(\varGamma _{1}=O_{p}(p^{3/2}n^{-1/2})=o_{p}(\sqrt{p})\) and \(\Gamma _{2}=O_{p}(p^{3}/n)\) by Markov’s inequality. Further, \(p=o(n^{2/5})\) is sufficient for \(\varGamma _{2}=o_{p}(\sqrt{p})\), and under the Condition \(7^{'}\), the order of \(p\) can achieve \(p=o(n^{1/2})\). \(\square \)

The following Lemma is needed for the proof of Proposition 2.

Lemma 6

Let \(\varvec{G}_{n}=\mathbf I _{p}-\varvec{N}_{n}\) with \(\varvec{N}_{n}=\varvec{V}_{n}^{-1/2}\widetilde{\varvec{S}}_{n}\varvec{V}_{n}^{-1/2}\). Suppose Condition \(6^{'}\), then

$$\begin{aligned} \text{ tr }(\varvec{G}_{n}^{2})=O_{p}(p^{2}/n). \end{aligned}$$

Proof

Note that

$$\begin{aligned} \varvec{G}_{n}^{2} =\mathbf I _{p}-\frac{2}{n}\sum _{i=1}^{n}\varvec{\xi }_{i}\varvec{\xi }_{i}^\mathsf{T}+\frac{1}{n^{2}}\sum _{i,j=1}^{n}\varvec{\xi }_{i}\varvec{\xi }_{i}^\mathsf{T}\varvec{\xi }_{j}\varvec{\xi }_{j}^\mathsf{T}. \end{aligned}$$

Thus,

$$\begin{aligned} \text{ E }\big [\text{ tr }(\varvec{G}_{n}^{2})\big ]&= \text{ E }\bigg [\,p-\frac{2}{n}\sum _{r=1}^{p}\sum _{i=1}^{n}\xi _{ir}^{2}+\frac{1}{n^{2}}\sum _{i,j=1}^{n}\sum _{r,s=1}^{p}\xi _{ir}\xi _{is}\xi _{jr}\xi _{js}\bigg ]\\&= p-2\sum _{r=1}^{p}\bar{\alpha }^{rr}+\frac{1}{n^{2}}\sum _{r,s=1}^{p}\Big (\sum _{i=j}+\sum _{i\ne j}\Big )\text{ E }(\xi _{ir}\xi _{is}\xi _{jr}\xi _{js})\\&\le -p+\frac{1}{n}\sum _{r,s=1}^{p}\bar{\alpha }^{rrss}+\frac{1}{n^{2}}\sum _{r,s=1}^{p}\sum _{i,j=1}^{n}\text{ E }(\xi _{ir}\xi _{is})\text{ E }(\xi _{jr}\xi _{js})\\&= \frac{1}{n}\sum _{r,s=1}^{p}\bar{\alpha }^{rrss} =O(p^{2}/n). \end{aligned}$$

This implies that \(\text{ tr }(\varvec{G}_{n}^{2})=O_{p}(p^{2}/n)\). \(\square \)

1.2 Proof of Proposition 2

Define \(e_{n}=n\bar{\varvec{Z}}_{n}^\mathsf{T}(\varvec{V}_{n}^{-1}-\widetilde{\varvec{S}}_{n}^{-1})\bar{\varvec{Z}}_{n}\). It is easy to see that

$$\begin{aligned} e_{n}=n\bar{\varvec{\xi }}_{n}^{\,\mathsf T}\bar{\varvec{\xi }}_{n}-n\bar{\varvec{\xi }}_{n}^{\,\mathsf T}\varvec{V}_{n}^{1/2}\widetilde{\varvec{S}}_{n}^{-1}\varvec{V}_{n}^{1/2}\bar{\varvec{\xi }}_{n}=n\bar{\varvec{\xi }}_{n}^{\,\mathsf T}(\mathbf I _{p}-\varvec{N}_{n}^{-1})\bar{\varvec{\xi }}_{n}. \end{aligned}$$

Note that \(\mathbf I _{p}-\varvec{N}_{n}^{-1}=-\varvec{G}_{n}-\varvec{G}_{n}^{2}-\cdots -\varvec{G}_{n}^{k}+\varvec{G}_{n}^{k}(\mathbf I _{p}-\varvec{N}_{n}^{-1})\). Hence,

$$\begin{aligned} e_{n}=n[-\bar{\varvec{\xi }}_{n}^{\,\mathsf T}\varvec{G}_{n}\bar{\varvec{\xi }}_{n}-\bar{\varvec{\xi }}_{n}^{\,\mathsf T}\varvec{G}_{n}^{2}\bar{\varvec{\xi }}_{n}-\cdots -\bar{\varvec{\xi }}_{n}^{\,\mathsf T}\varvec{G}_{n}^{k}\bar{\varvec{\xi }}_{n}] +n\bar{\varvec{\xi }}_{n}^{\,\mathsf T}\varvec{G}_{n}^{k}(\mathbf I _{p}-\varvec{N}_{n}^{-1})\bar{\varvec{\xi }}_{n}.\qquad \quad \end{aligned}$$
(13)

Now we consider the convergence of the right-hand side of (13). First, we focus on the first term. By Lemmas 4 and 5, we have

$$\begin{aligned} \Vert \bar{\varvec{\xi }}_{n}\Vert ^{2} \le \frac{1}{c_{3}}\Vert \bar{\varvec{Z}}_{n}\Vert ^{2}=O_{p}(p/n), \end{aligned}$$

and \(|\gamma _{i}(\varvec{G}_{n})| \le [\text{ tr }(\varvec{G}_{n}^{2})]^{1/2} =O_{p}(p/\sqrt{n})\). Therefore,

$$\begin{aligned} |\bar{\varvec{\xi }}_{n}^{\,\mathsf T}\varvec{G}_{n}^{k}\bar{\varvec{\xi }}_{n}|\le \Vert \bar{\varvec{\xi }}_{n}\Vert ^{2}\max _{1\le i\le p}|\gamma _{i}(\varvec{G}_{n}^{k})| \le \Vert \bar{\varvec{\xi }}_{n}\Vert ^{2}[\text{ tr }(\varvec{G}_{n}^{2})]^{k/2}=O_{p}(p^{k+1}/n^{k/2+1}), \end{aligned}$$

which implies that the series \(n\sum _{k=1}^{\infty }(-\bar{\varvec{\xi }}_{n}^{\,\mathsf T}\varvec{G}_{n}^{k}\bar{\varvec{\xi }}_{n})\) is convergent, as long as \(n\) is fixed and \(p=o(n^{1/2})\). On the other hand, with lengthy algebra we have

$$\begin{aligned} \text{ E }\left| n\bar{\varvec{\xi }}_{n}^{\,\mathsf T}\varvec{G}_{n}\bar{\varvec{\xi }}_{n}\right| ^{2}=n^{2}\text{ E }\left| \bar{\varvec{Z}}_{n}^{\,\mathsf T}(\varvec{V}_{n}-\widetilde{\varvec{S}}_{n})\bar{\varvec{Z}}_{n}\right| ^{2}=O(p^{3}/n), \end{aligned}$$

which means that \(n\bar{\varvec{\xi }}_{n}^{\,\mathsf T}\varvec{G}_{n}\bar{\varvec{\xi }}_{n}=O_{p}(p^{3/2}/n^{1/2})=o_{p}(\sqrt{p})\). Therefore we conclude from above that \(n\sum _{k=1}^{\infty }(-\bar{\varvec{\xi }}_{n}^{\,\mathsf T}\varvec{G}_{n}^{k}\bar{\varvec{\xi }}_{n})=o_{p}(\sqrt{p})\).

For the second term in (13), we will next show in the following arguments that the remainder term \(n\bar{\varvec{\xi }}_{n}^{\,\mathsf T}\varvec{G}_{n}^{k}(\mathbf I _{p}-\varvec{N}_{n}^{-1})\bar{\varvec{\xi }}_{n}\) is negligible as \(k\rightarrow \infty \). For this, we firstly note that

$$\begin{aligned} \big |n\bar{\varvec{\xi }}_{n}^{\,\mathsf T}\varvec{G}_{n}^{k}(\mathbf I _{p}-\varvec{N}_{n}^{-1})\bar{\varvec{\xi }}_{n}\big | \le \big |n\bar{\varvec{\xi }}_{n}^{\,\mathsf T}\varvec{G}_{n}^{k}\bar{\varvec{\xi }}_{n}\big |+\big |n\bar{\varvec{\xi }}_{n}^{\,\mathsf T}\varvec{G}_{n}^{k}\varvec{N}_{n}^{-1}\bar{\varvec{\xi }}_{n}\big | \end{aligned}$$

and

$$\begin{aligned} \big |n\bar{\varvec{\xi }}_{n}^{\,\mathsf T}\varvec{G}_{n}^{k}\bar{\varvec{\xi }}_{n}\big |=nO_{p}(p^{k+1}/n^{k/2+1})=O_{p}(p^{k+1}/n^{k/2}). \end{aligned}$$

Furthermore, applying the Lemma 4 of Liu et al. (2013), which remains valid for the case of any \(n\times n\) symmetric matrix \(\varvec{A}=(a_{ij})\), that is, \(\mathcal {M}(\varvec{A})\le \max _{1\le i\le n}|\gamma _{i}(\varvec{A})|\), we have

$$\begin{aligned} \big |n\bar{\varvec{\xi }}_{n}^{\,\mathsf T}\varvec{G}_{n}^{k}\varvec{N}_{n}^{-1}\bar{\varvec{\xi }}_{n}\big |&\le n\Vert \bar{\varvec{\xi }}_{n}\Vert ^{2}\max _{1\le i\le n}\big \{|\gamma _{i}(\varvec{G}_{n}^{k}\varvec{N}_{n}^{-1})|\big \} \le np\Vert \bar{\varvec{\xi }}_{n}\Vert ^{2}\mathcal {M}(\varvec{G}_{n}^{k}\varvec{N}_{n}^{-1})\\&\le np^{2}\Vert \bar{\varvec{\xi }}_{n}\Vert ^{2}\max _{1\le i\le p}|\gamma _{i}(\varvec{G}_{n}^{k})|\gamma _{1}(\varvec{N}_{n}^{-1})\\&\le np^{2}\Vert \bar{\varvec{\xi }}_{n}\Vert ^{2}\big [\text{ tr }(\varvec{G}_{n}^{2})\big ]^{k/2}\gamma _{1}(\varvec{V}_{n})\gamma _{1}(\widetilde{\varvec{S}}_{n})\\&= O_{p}(p^{k+3}/n^{k+2}) =o_{p}(1). \end{aligned}$$

Under Condition 4, the last equality holds as \(k\rightarrow \infty \). Therefore, the consequence of Proposition 2 follows. \(\square \)

We give the following Lemma for the proof of Proposition 3.

Lemma 7

Under model (7), suppose that \(\text{ E }(\xi _{ij_{1}}^{\alpha _{1}}\xi _{ij_{2}}^{\alpha _{2}}\ldots \xi _{ij_{l}}^{\alpha _{l}})\le B\) for some finite positive constant \(B<\infty \) and any \(1\le i\le n\), whenever \(\sum _{i=1}^{l}\alpha _{i}\le 6\), then for some finite positive constant \(c\),

$$\begin{aligned} \text{ E }\left( \varvec{\xi }_{n}^\mathsf{T}\sum _{i=1}^{n-1}\varvec{\xi }_{i}\right) ^{6}\le cp^{6}(n^{3}+n^{2}+n). \end{aligned}$$

Proof

We state that, here and in the sequel, \(c\) stands for constant which may be different from line to line and even from formula to formula and whose value is not of interest.

Indeed, a direct calculation gives that

$$\begin{aligned} \text{ E }\bigg (\varvec{\xi }_{n}^\mathsf{T}\sum _{i=1}^{n-1}\varvec{\xi }_{i}\bigg )^{6}&= \text{ E }\bigg [\bigg (\varvec{\xi }_{n}^\mathsf{T}\sum _{i_{1}=1}^{n-1}\varvec{\xi }_{i_{1}}\bigg )\cdots \bigg (\varvec{\xi }_{n}^\mathsf{T}\sum _{i_{6}=1}^{n-1}\varvec{\xi }_{i_{6}}\bigg )\bigg ]\\&= \sum _{i_{1},\ldots ,i_{6}=1}^{n-1}\sum _{j_{1},\ldots ,j_{6}=1}^{p}\text{ E }(\xi _{nj_{1}}\ldots \xi _{nj_{6}})\text{ E }(\xi _{i_{1}j_{1}}\ldots \xi _{i_{6}j_{6}})\\&\le B\big [5(n-1)(n-2)p^{6}B^{2}+10(n-1)(n-2)p^{6}B^{2}\\&+\,\,45(n-1)(n-2)(n-3)p^{6}B^{2}+(n-1)p^{6}B\big ]\\&\le cp^{6}(n^{3}+n^{2}+n) \end{aligned}$$

\(\square \)

1.3 Proof of Proposition 3

Let \(\varvec{J}_{n}=\sum _{i=1}^{n}\varvec{\xi }_{i}\), it is clear that

$$\begin{aligned} \frac{n\bar{\varvec{Z}}_{n}^\mathsf{T}\varvec{V}_{n}^{-1}\bar{\varvec{Z}}_{n}-p}{w_{n}/n}=\frac{n\Vert \bar{\varvec{\xi }}_{n}\Vert ^{2}-p}{w_{n}/n}=\frac{\Vert \varvec{J}_{n}\Vert ^{2}-np}{w_{n}} \end{aligned}$$

To prove Proposition 3, the strategy is to construct a martingale and then to apply the martingale central limit theorem based on it. Hence, it is technically convenient to define \(M_{n}=\Vert \varvec{J}_{n}\Vert ^{2}-np\), \(n\ge 1\), \(M_{0}=0\), and \(H_{n}=M_{n}-M_{n-1},n\ge 1\). It is easy to see that

$$\begin{aligned} M_{n}=\Vert \varvec{J}_{n-1}\Vert ^{2}-(n-1)p+2\varvec{\xi }_{n}^\mathsf{T}\varvec{J}_{n-1}+\Vert \varvec{\xi }_{n}\Vert ^{2}-p, \end{aligned}$$

and then

$$\begin{aligned} H_{n}=2\varvec{\xi }_{n}^\mathsf{T}\varvec{J}_{n-1}+\Vert \varvec{\xi }_{n}\Vert ^{2}-p,\quad \text{ E }H_{n}=\text{ E }\Vert \varvec{\xi }_{n}\Vert ^{2}-p. \end{aligned}$$

In addition, denote by \(\varvec{\mathcal {F}}_{i}=\sigma (\varvec{\xi }_{1},\ldots ,\varvec{\xi }_{i})=\sigma (\varvec{J}_{1},\ldots ,\varvec{J}_{i})\), for \(i=1, 2, \ldots , n\), the \(\sigma \)-fileds generated by \(\varvec{\xi }_{1},\ldots ,\varvec{\xi }_{i}\). It can be seen that \(\{M_{n}, \varvec{\mathcal {F}}_{n}, n\ge 1\}\) is not a martingale, although it is true in the situation of Portnoy (1988). In order to construct a martingale based on \(M_{n}\) for martingale limit theorem, we define some other notation.

Let \(\phi _{n}=H_{n}-\text{ E }H_{n}\), \(n\ge 1\), and \(W_{n}=\sum _{i=1}^{n}\phi _{i}=M_{n}-\sum _{i=1}^{n}\text{ E }H_{i}\). It is easy to show that, for each \(s<t\),

$$\begin{aligned} \text{ E }[W_{t}|\varvec{\mathcal {F}}_{s}] =\Vert \varvec{J}_{s}\Vert ^{2}-s\,p =W_{s}, \end{aligned}$$

which indicates that \(\{W_{n},\varvec{\mathcal {F}}_{n},n\ge 1\}\) is a martingale.

Recalling the definitions of \(\sigma _{i}\)’s and \(w_{n}\), it is easy to see that \(\sigma _{i}^{2}=\text{ E }\phi _{i}^{2}\) and \(w_{n}^{2}=\sum _{i=1}^{n}\sigma _{i}^{2}\). To apply the martingale central limit theorem of Chow and Teicher (1997, Theorem 1, \(\text{ P }_{336}\)), it suffices to show that if \(p^{3}/n\rightarrow 0\), then both

$$\begin{aligned} \sum _{i=1}^{n}\text{ E }|\phi _{i}|^{3}/w_{n}^{3}\rightarrow 0 \end{aligned}$$
(14)

and

$$\begin{aligned} \sum _{i=1}^{n}\text{ E }\big |\text{ E }(\phi _{i}^{2}|\varvec{\mathcal {F}}_{i-1})-\sigma _{i}^{2}\big |/w_{n}^{2}\rightarrow 0 \end{aligned}$$
(15)

hold.

Hence, in the following arguments, our task is to prove (14) and (15). For this, we calculate firstly \(\sigma _{i}\)’s, for \(i\ge 1\). It is easy to see that, for \(i\ge 1\),

$$\begin{aligned} \sigma _{i}^{2} =4\text{ E }[\varvec{J}_{i-1}^\mathsf{T}\varvec{\xi }_{i}\varvec{\xi }_{i}^\mathsf{T}\varvec{J}_{i-1}]+\text{ E }(\Vert \varvec{\xi }_{i}\Vert ^{2}-p)^{2}-(\text{ E }\Vert \varvec{\xi }_{i}\Vert ^{2}-p)^{2}. \end{aligned}$$

For the first term of the expression above, we can verify that

$$\begin{aligned} \text{ E }[\varvec{J}_{i-1}^\mathsf{T}\varvec{\xi }_{i}\varvec{\xi }_{i}^\mathsf{T}\varvec{J}_{i-1}]&= \text{ E }\big [\varvec{J}_{i-1}^\mathsf{T}\text{ E }(\varvec{\xi }_{i}\varvec{\xi }_{i}^\mathsf{T})\varvec{J}_{i-1}\big ] =\sum _{k=1}^{i-1}\text{ tr }(\varvec{V}_{n}^{-1}\varvec{V}^{(i)}\varvec{V}_{n}^{-1}\varvec{V}^{(k)})\\&\ge \sum _{k=1}^{i-1}p\frac{\gamma _{p}(\varvec{V}^{(i)})\gamma _{p}(\varvec{V}^{(k)})}{\gamma _{1}^{2}(\varvec{V}_{n})} \ge p(i-1)\left( \frac{c_{3}}{c_{4}}\right) ^{2}. \end{aligned}$$

Recall that \(\text{ E }(\xi _{ij_{1}}^{\alpha _{1}}\xi _{ij_{2}}^{\alpha _{2}}\ldots \xi _{ij_{l}}^{\alpha _{l}})\le B\) for any \(1\le i\le n\) and all \(j_{1}, j_{2},\ldots , j_{l}=1, \ldots , p\), whenever \(\sum _{i=1}^{k}\alpha _{i}\le 6\). Therefore we have, for \(k\le 3\),

$$\begin{aligned} \text{ E }\Vert \varvec{\xi }_{i}\Vert ^{2k}=\text{ E }\left[ \left( \sum _{j=1}^{p}\xi _{ij}^{2}\right) ^{k}\right] \le p^{k-1}\sum _{j=1}^{p}\text{ E }\xi _{ij}^{2k}\le p^{k}B. \end{aligned}$$

Then, it follows that \(\text{ E }(\Vert \varvec{\xi }_{i}\Vert ^{2}-p)^{2}=O(p^{2})\), and \((\text{ E }\Vert \varvec{\xi }_{i}\Vert ^{2}-p)^{2}=O(p^{2})\). These lead to \(\sigma _{i}^{2}\ge 4(\frac{c_{3}}{c_{4}})^{2}p(i-1)+O(p^{2})\) and then

$$\begin{aligned} w_{n}^{2} =2\Bigg (\frac{c_{3}}{c_{4}}\Bigg )^{2}p\,n(n-1)+O(np^{2}) \ge 2\Bigg (\frac{c_{3}}{c_{4}}\Bigg )^{2}n^{2}p(1+O(p/n)). \end{aligned}$$
(16)

In order to prove (14), we note that the martingale difference sequence \(\phi _{n}=2\varvec{\xi }_{n}^\mathsf{T}\varvec{J}_{n-1}+\Vert \varvec{\xi }_{n}\Vert ^{2}-\text{ E }\Vert \varvec{\xi }_{n}\Vert ^{2}\). Hence, we have

$$\begin{aligned} \text{ E }|\phi _{i}|^{3} \le 32\big [\text{ E }(\varvec{\xi }_{i}^\mathsf{T}\varvec{J}_{i-1})^{6}\big ]^{1/2}+4Bp^{3} \le c\big [(\text{ E }|\varvec{\xi }_{i}^\mathsf{T}\varvec{J}_{i-1}|^{6})^{1/2}+p^{3}\big ]. \end{aligned}$$

From Lemma 7, we know that \(\text{ E }(\varvec{\xi }_{i}^\mathsf{T}\varvec{J}_{i-1})^{6}\le cp^{6}(i^{3}+i^{2}+i)\). Hence we obtain that

$$\begin{aligned} \sum _{i=1}^{n}\text{ E }|\phi _{i}|^{3}\le c\sum _{i=1}^{n}p^{3}(i^{3/2}+i+\sqrt{i}+1)\le cp^{3}(n^{5/2}+n^{2}+n^{3/2}+n). \end{aligned}$$

Due to (16), if \(\frac{p^{3}}{n}\rightarrow 0\), then we derive

$$\begin{aligned} \frac{\sum _{i=1}^{n}\text{ E }|\phi _{i}|^{3}}{w_{n}^{3}}\le cp^{3/2}(1/\sqrt{n}+1/n+1/n^{3/2}+1/n^{2})\rightarrow 0 \end{aligned}$$

and then (14) follows.

We now focus on the proof of (15). It is easy to see that

$$\begin{aligned} \text{ E }[\phi _{i}^{2}|\varvec{\mathcal {F}}_{i-1}] =4\varvec{J}_{i-1}^\mathsf{T}\text{ E }(\varvec{\xi }_{i}\varvec{\xi }_{i}^\mathsf{T})\varvec{J}_{i-1} +4\varvec{J}_{i-1}^\mathsf{T}\text{ E }\big [\varvec{\xi }_{i}(\Vert \varvec{\xi }_{i}\Vert ^{2} -\text{ E }\Vert \varvec{\xi }_{i}\Vert ^{2})\big ] +O(p^{2}). \end{aligned}$$

Therefore we have

$$\begin{aligned}&\big |\text{ E }[\phi _{i}^{2}\big |\varvec{\mathcal {F}}_{i-1}]-\sigma _{i}^{2}|^{2}\le 12\big \{\big |\varvec{J}_{i-1}^\mathsf{T}\text{ E }(\varvec{\xi }_{i}\varvec{\xi }_{i}^\mathsf{T})\varvec{J}_{i-1} -\text{ E }(\varvec{J}_{i-1}^\mathsf{T}\varvec{\xi }_{i}\varvec{\xi }_{i}^\mathsf{T}\varvec{J}_{i-1})\big |^{2}\\&\quad +\,\,\text{ E }\big [\varvec{\xi }_{i}^\mathsf{T}(\Vert \varvec{\xi }_{i}\Vert ^{2}-\text{ E }\Vert \varvec{\xi }_{i}\Vert ^{2})\big ]\varvec{J}_{i-1}\varvec{J}_{i-1}^\mathsf{T}\text{ E }\big [\varvec{\xi }_{i}(\Vert \varvec{\xi }_{i}\Vert ^{2} -\text{ E }\Vert \varvec{\xi }_{i}\Vert ^{2})\big ] +O(p^{4})\big \} \end{aligned}$$

and then

$$\begin{aligned}&\big [\text{ E }\big |\text{ E }(\phi _{i}^{2}|\varvec{\mathcal {F}}_{i-1})-\sigma _{i}^{2}\big |^{2}\big ]^{1/2}\nonumber \\&\quad \le \sqrt{12}\big \{\text{ E }\big [\varvec{J}_{i-1}^\mathsf{T}\text{ E }(\varvec{\xi }_{i}\varvec{\xi }_{i}^\mathsf{T})\varvec{J}_{i-1} -\text{ E }(\varvec{J}_{i-1}^\mathsf{T}\varvec{\xi }_{i}\varvec{\xi }_{i}^\mathsf{T}\varvec{J}_{i-1})\big ]^{2} +\text{ E }\big [\varvec{\xi }_{i}^\mathsf{T}(\Vert \varvec{\xi }_{i}\Vert ^{2} -\text{ E }\Vert \varvec{\xi }_{i}\Vert ^{2})\big ]\nonumber \\&\qquad \times \,\,\text{ E }(\varvec{J}_{i-1}\varvec{J}_{i-1}^\mathsf{T})\text{ E }\big [\varvec{\xi }_{i}(\Vert \varvec{\xi }_{i}\Vert ^{2} -\text{ E }\Vert \varvec{\xi }_{i}\Vert ^{2})\big ] +O(p^{4})\big \}^{1/2}. \end{aligned}$$
(17)

For the first term in (17), with tedious calculation we obtain that

$$\begin{aligned}&\text{ E }\big |\varvec{J}_{i-1}^\mathsf{T}\text{ E }(\varvec{\xi }_{i}\varvec{\xi }_{i}^\mathsf{T})\varvec{J}_{i-1}-\text{ E }(\varvec{J}_{i-1}^\mathsf{T}\varvec{\xi }_{i}\varvec{\xi }_{i}^\mathsf{T}\varvec{J}_{i-1})\big |^{2}\nonumber \\&\quad =\sum _{k,l,s,t=1}^{i-1}\text{ E }[(\varvec{\xi }_{k}^\mathsf{T}\varvec{V}_{n}^{-1/2}\varvec{V}^{(i)}\varvec{V}_{n}^{-1/2}\varvec{\xi }_{l})(\varvec{\xi }_{s}^{t}\varvec{V}_{n}^{-1/2}\varvec{V}^{(i)}\varvec{V}_{n}^{-1/2}\varvec{\xi }_{t})]\nonumber \\&\qquad +\left[ \,\,\sum _{k=1}^{i-1}\text{ tr }(\varvec{V}_{n}^{-1}\varvec{V}^{(k)}\varvec{V}_{n}^{-1}\varvec{V}^{(i)})\right] ^{2} -2\left[ \,\,\sum _{k=1}^{i-1}\text{ tr }(\varvec{V}_{n}^{-1}\varvec{V}^{(k)}\varvec{V}_{n}^{-1}\varvec{V}^{(i)})\right] \nonumber \\&\qquad \times \,\,\text{ E }\left[ \sum _{k,l=1}^{i-1}\varvec{\xi }_{k}^{t}\varvec{V}_{n}^{-1/2}\varvec{V}^{(i)}\varvec{V}_{n}^{-1/2}\varvec{\xi }_{l}\right] \end{aligned}$$
(18)

Recalling that \(\varvec{\xi }_{i},1\le i\le n\) are independent with mean zero and noting that \(\varvec{\xi }_{i}^\mathsf{T}\varvec{A}\varvec{\xi }_{j}=\varvec{\xi }_{j}^\mathsf{T}\varvec{A}\varvec{\xi }_{i}\) if \(\varvec{A}\) is a symmetric matrix, we can further simplify the terms of (18) as follows. That is

$$\begin{aligned}&\sum _{k,l,s,t=1}^{i-1}\text{ E }\big [(\varvec{\xi }_{k}^\mathsf{T}\varvec{V}_{n}^{-1/2}\varvec{V}^{(i)}\varvec{V}_{n}^{-1/2}\varvec{\xi }_{l})(\varvec{\xi }_{s}^\mathsf{T}\varvec{V}_{n}^{-1/2}\varvec{V}^{(i)}\varvec{V}_{n}^{-1/2}\varvec{\xi }_{t})\big ] \nonumber \\&\quad =\sum _{k\ne l=1}^{i-1}\text{ E }\big [\varvec{\xi }_{k}^\mathsf{T}\varvec{V}_{n}^{-1/2}\varvec{V}^{(i)}\varvec{V}_{n}^{-1/2}\varvec{\xi }_{k}\big ]\text{ E }\big [\varvec{\xi }_{l}^\mathsf{T}\varvec{V}_{n}^{-1/2}\varvec{V}^{(i)}\varvec{V}_{n}^{-1/2}\varvec{\xi }_{l}\big ]\nonumber \\&\qquad +\,\,2\sum _{k\ne l=1}^{i-1}\text{ E }\big [\varvec{\xi }_{k}^\mathsf{T}\varvec{V}_{n}^{-1/2}\varvec{V}^{(i)}\varvec{V}_{n}^{-1/2}\varvec{\xi }_{k}\varvec{\xi }_{k}^\mathsf{T}\varvec{V}_{n}^{-1/2}\varvec{V}^{(i)}\varvec{V}_{n}^{-1/2}\varvec{\xi }_{l}\big ] \nonumber \\&\qquad +\,\,\sum _{j=1}^{i-1}\text{ E }\big [\varvec{\xi }_{j}^\mathsf{T}\varvec{V}_{n}^{-1/2}\varvec{V}^{(i)}\varvec{V}_{n}^{-1/2}\varvec{\xi }_{j}\big ]^{2} \nonumber \\&\quad \le \left[ \,\,\sum _{k=1}^{i-1}\text{ tr }(\varvec{V}_{n}^{-1/2}\varvec{V}^{(k)}\varvec{V}_{n}^{-1/2}\varvec{V}_{n}^{-1/2}\varvec{V}^{(i)}\varvec{V}_{n}^{-1/2})\right] ^{2}\nonumber \\&\qquad +\,\,2\sum _{k\ne l=1}^{i-1}\text{ E }\big [\varvec{\xi }_{l}^\mathsf{T}(\varvec{V}_{n}^{-1/2}\varvec{V}^{(i)}\varvec{V}_{n}^{-1/2})\text{ E }(\varvec{\xi }_{k}\varvec{\xi }_{k}^\mathsf{T})(\varvec{V}_{n}^{-1/2}\varvec{V}^{(i)}\varvec{V}_{n}^{-1/2})\varvec{\xi }_{l}\big ]\nonumber \\&\qquad +\,\,\sum _{j=1}^{i-1}\sum _{k,l,s,t=1}^{p}\big (\varvec{V}_{n}^{-1/2}\varvec{V}^{(i)}\varvec{V}_{n}^{-1/2}\big )_{kl}\big (\varvec{V}_{n}^{-1/2}\varvec{V}^{(i)}\varvec{V}_{n}^{-1/2}\big )_{st} \text{ E }(\xi _{jk}\xi _{jl}\xi _{js}\xi _{jt})\nonumber \\&\quad \le \left[ \,\,\sum _{k=1}^{i-1}\text{ tr }(\varvec{V}_{n}^{-1}\varvec{V}^{(k)}\varvec{V}_{n}^{-1}\varvec{V}^{(i)})\right] ^{2} +2(i-1)(i-2)p\gamma _{1}^{4}(\varvec{V}_{n}^{-1})\nonumber \\&\qquad \times \,\, \gamma _{1}(\varvec{V}^{(l)})\gamma _{1}(\varvec{V}^{(k)})\gamma _{1}(\varvec{V}^{(i)}) + (i-1)p^{4}\gamma _{1}^{4}(\varvec{V}_{n}^{-1/2})\gamma _{1}^{2}(\varvec{V}^{(i)})B \nonumber \\&\quad \le \left[ \,\,\sum _{k=1}^{i-1}\text{ tr }(\varvec{V}_{n}^{-1}\varvec{V}^{(k)}\varvec{V}_{n}^{-1}\varvec{V}^{(i)})\right] ^{2} +2i^{2}p\left( \frac{c_{4}}{c_{3}}\right) ^{4} +ip^{4}B\left( \frac{c_{4}}{c_{3}}\right) ^{2} \end{aligned}$$
(19)

and

$$\begin{aligned}&\left[ \,\,\sum _{k=1}^{i-1}\text{ tr }(\varvec{V}_{n}^{-1}\varvec{V}^{(k)}\varvec{V}_{n}^{-1}\varvec{V}^{(i)})\right] \left[ \,\,\sum _{k,l=1}^{i-1} \text{ E }(\varvec{\xi }_{k}^\mathsf{T}\varvec{V}_{n}^{-1/2}\varvec{V}^{(i)}\varvec{V}_{n}^{-1/2}\varvec{\xi }_{l})\right] \nonumber \\&\quad =\sum _{k=1}^{i-1}\text{ tr }(\varvec{V}_{n}^{-1}\varvec{V}^{(k)}\varvec{V}_{n}^{-1}\varvec{V}^{(i)}). \end{aligned}$$
(20)

Finally, by (18), (19) and (20), we derive

$$\begin{aligned} \text{ E }[\varvec{J}_{i-1}^\mathsf{T}\text{ E }(\varvec{\xi }_{i}\varvec{\xi }_{i}^\mathsf{T})\varvec{J}_{i-1}-\text{ E }(\varvec{J}_{i-1}^\mathsf{T}\varvec{\xi }_{i}\varvec{\xi }_{i}^\mathsf{T}\varvec{J}_{i-1})]^{2} \le 2i^{2}p\left( \frac{c_{4}}{c_{3}}\right) ^{4}+ip^{4}B\left( \frac{c_{4}}{c_{3}}\right) ^{2}\qquad \end{aligned}$$
(21)

For the second term in (17), it is clear that

$$\begin{aligned}&\text{ E }\big [\varvec{\xi }_{i}^\mathsf{T}(\Vert \varvec{\xi }_{i}\Vert ^{2}-\text{ E }\Vert \varvec{\xi }_{i}\Vert ^{2})\big ]\text{ E }(\varvec{J}_{i-1}\varvec{J}_{i-1}^\mathsf{T}) \text{ E }\big [\varvec{\xi }_{i}(\Vert \varvec{\xi }_{i}\Vert ^{2}-\text{ E }\Vert \varvec{\xi }_{i}\Vert ^{2})\big ]\nonumber \\&\quad =\text{ E }(\varvec{\xi }_{i}^\mathsf{T}\Vert \varvec{\xi }_{i}\Vert ^{2})\left[ \,\,\sum _{j,k=1}^{i-1}\text{ E }(\varvec{\xi }_{k}\varvec{\xi }_{k}^\mathsf{T})\,\right] \text{ E }(\varvec{\xi }_{i}\Vert \varvec{\xi }_{i}\Vert ^{2})\nonumber \\&\quad =\sum _{k,l=1}^{p}\sum _{s,t=1}^{p}\left( \sum _{j=1}^{i-1}\varvec{V}_{n}^{-1/2}\varvec{V}^{(j)}\varvec{V}_{n}^{-1/2}\right) _{kl} \text{ E }(\xi _{ik}\xi _{is}^{2})\text{ E }(\xi _{il}\xi _{it}^{2})\nonumber \\&\quad \le \sum _{k,l=1}^{p}\sum _{s,t=1}^{p}\mathcal {M}\left( \sum _{j=1}^{i-1}\varvec{V}_{n}^{-1/2}\varvec{V}^{(j)}\varvec{V}_{n}^{-1/2}\right) \text{ E }(\xi _{ik}\xi _{is}^{2})\text{ E }(\xi _{il}\xi _{it}^{2})\nonumber \\&\quad \le p^{4}\gamma _{1}\left( \sum _{j=1}^{i-1}\varvec{V}_{n}^{-1/2}\varvec{V}^{(j)}\varvec{V}_{n}^{-1/2}\right) B^{2}\nonumber \\&\quad \le p^{4}\gamma _{1}^{2}(\varvec{V}_{n}^{-1/2})\left( \sum _{j=1}^{i-1}\gamma _{1}(\varvec{V}^{(j)})\right) B^{2} <ip^{4}B\frac{c_{3}}{c_{4}} \end{aligned}$$
(22)

Summarizing (17), (21), and (22), we get

$$\begin{aligned} \big [\text{ E }\big |\text{ E }(\phi _{i}^{2}|\varvec{\mathcal {F}}_{i-1})-\sigma _{i}^{2}\big |^{2}\big ]^{1/2}\le c\big \{i^{2}p+ip^{4}+O(p^{4})\big \}^{1/2}, \end{aligned}$$

and further we obtain that

$$\begin{aligned}&\sum _{i=1}^{n}\text{ E }\big |\text{ E }(\phi _{i}^{2}|\varvec{\mathcal {F}}_{i-1})-\sigma _{i}^{2}\big |/w_{n}^{2} \le \sum _{i=1}^{n}\big [\text{ E }\big |\text{ E }(\phi _{i}^{2}|\varvec{\mathcal {F}}_{i-1})-\sigma _{i}^{2}\big |^{2}\big ]^{1/2}/w_{n}^{2}\\&\quad \le c\big (n^{2}p^{1/2}+n^{3/2}p^{2}+O(np^{2})\big )/(n^{2}p) =o(1) \end{aligned}$$

The last equality holds if \(p^{3}/n\rightarrow 0\). Therefore, (15) follows.

Applying the martingale central limit theorem of Chow and Teicher (1997), we get

$$\begin{aligned} \frac{W_{n}}{w_{n}}\mathop {\rightarrow }\limits ^{\mathcal {L}}N(0,1),\quad \text{ as }\quad n\rightarrow \infty . \end{aligned}$$

In addition, note that \((n\bar{\varvec{Z}}_{n}^\mathsf{T}\varvec{V}_{n}^{-1}\bar{\varvec{Z}}_{n}-p)/(w_{n}/n)=(W_{n}+\sum _{i=1}^{n}\text{ E }H_{i})/(w_{n}/n)\) and \(\sum _{i=1}^{n}\text{ E }H_{i}=0\) whenever \(n\) is the sample size. Therefore, the consequence of Proposition 3 follows. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, H., Zou, C., Wang, Z. et al. Empirical likelihood for high-dimensional linear regression models. Metrika 77, 921–945 (2014). https://doi.org/10.1007/s00184-013-0479-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00184-013-0479-z

Keywords

Mathematics Subject Classification (2000)

Navigation