Skip to main content
Log in

Nonparametric density estimation in compound Poisson processes using convolution power estimators

  • Published:
Metrika Aims and scope Submit manuscript

Abstract

Consider a compound Poisson process which is discretely observed with sampling interval \(\Delta \) until exactly \(n\) nonzero increments are obtained. The jump density and the intensity of the Poisson process are unknown. In this paper, we build and study parametric estimators of appropriate functions of the intensity, and an adaptive nonparametric estimator of the jump size density. The latter estimation method relies on nonparametric estimators of \(m\)th convolution powers density. The \(L^2\)-risk of the adaptive estimator achieves the optimal rate in the minimax sense over Sobolev balls. Numerical simulation results on various jump densities enlight the good performances of the proposed estimator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  • Basawa IV, Brockwell PJ (1982) Nonparametric estimation for nondecreasing Lévy processes. J Roy Stat Soc Ser B 44:262–269

    MATH  MathSciNet  Google Scholar 

  • Birgé L, Massart P (1998) Minimum contrast estimators on sieves: exponential bounds and rates of convergence. Bernoulli 4:329–375

    Article  MATH  MathSciNet  Google Scholar 

  • Buchmann B, Grübel R (2003) Decompounding: an estimation problem for Poisson random sums. Ann Stat 31:1054–1074

    Article  MATH  Google Scholar 

  • Buchmann B (2009) Weighted empirical processes in the nonparametric inference for Lévy processes. Math Methods Stat 18:281–309

    Article  MathSciNet  Google Scholar 

  • Chen SX, Delaigle A, Hall P (2010) Nonparametric estimation for a class of Lévy processes. J Econom 157:257–271

    Article  MathSciNet  Google Scholar 

  • Chesneau C, Comte F, Navarro F (2013) Fast nonparametric estimation for convolutions of densities. Can J Stat 41:617–636

    Google Scholar 

  • Comte F, Genon-Catalot V (2009) Nonparametric estimation for pure jump Lévy processes based on high frequency data. Stoch Process Appl 119:4088–4123

    Google Scholar 

  • Comte F, Genon-Catalot V (2010) Nonparametric adaptive estimation for pure jump Lévy processes. Ann Inst Henri Poincaré Probab Stat 46:595–617

    Article  MATH  MathSciNet  Google Scholar 

  • Comte F, Genon-Catalot V (2011) Estimation for Lévy processes from high frequency data within a long time interval. Ann Stat 39:803–837

    Article  MATH  MathSciNet  Google Scholar 

  • Duval C (2013a) Density estimation for compound Poisson processes from discrete data. Stoch Process Appl 123:3963–3986

    Article  MathSciNet  Google Scholar 

  • Duval C (2013b) Nonparametric estimation of a renewal reward process from discrete data. Math Methods Stat 22:28–56

    Article  MATH  MathSciNet  Google Scholar 

  • Embrechts P, Klüppelberg C, Mikosch T (1997) Modelling extremal events. For insurance and finance. Applications of Mathematics 33. Springer, Berlin

  • Figueroa-López JE, Houdré C (2006) Risk bounds for the non-parametric estimation of Lévy processes. High dimensional probability, 96–116, IMS Lecture Notes Monogr. Ser, 51, Inst. Math. Statist., Beachwood, OH

  • Figueroa-López JE (2009) Nonparametric estimation of Lévy models based on discrete-sampling. Optimality, 117–146, IMS Lecture Notes Monogr. Ser., 57, Inst. Math. Statist., Beachwood, OH

  • Gugushvili S (2009) Nonparametric estimation of the characteristic triplet of a discretely observed Lévy process. J Nonparametr Stat 21:321–343

    Article  MATH  MathSciNet  Google Scholar 

  • Gugushvili S (2012) Nonparametric inference for discretely sampled Lévy processes. Ann Inst Henri Poincaré Probab Stat 48:282–307

    Article  MATH  MathSciNet  Google Scholar 

  • Jongbloed G, van der Meulen FH, van der Vaart AW (2005) Nonparametric inference for Lévy-driven Ornstein-Uhlenbeck processes. Bernoulli 11:759–791

    Article  MATH  MathSciNet  Google Scholar 

  • Katz RW (2002) Stochastic modeling of hurricane damage. J Appl Meteorol 41:754–762

    Article  Google Scholar 

  • Kessler M (1997) Estimation of an ergodic diffusion from discrete observations. Scand J Stat 24:211–229

    Article  MATH  MathSciNet  Google Scholar 

  • Kim Y (1999) Nonparametric Bayesian estimators for counting processes. Ann Stat 27:562–588

    Article  MATH  Google Scholar 

  • Klein T, Rio E (2005) Concentration around the mean for maxima of empirical processes. Ann Probab 33:1060–1077

    Article  MATH  MathSciNet  Google Scholar 

  • Neumann Michael H, Reiss M (2009) Nonparametric estimation for Lévy processes from low-frequency observations. Bernoulli 15:223–248

    Article  MATH  MathSciNet  Google Scholar 

  • Scalas E (2006) The application of continuous-time random walks in finance and economics. Physica A 362:225–239

    Article  Google Scholar 

  • Schick A, Wefelmeyer W (2004) Root \(n\) consistent density estimators for sums of independent random variables. J Nonparametr Stat 16:925–935

    Article  MATH  MathSciNet  Google Scholar 

  • Tsybakov A (2009) Introduction to nonparametric estimation. Springer, Berlin

  • Ueltzhöfer FAJ, Klüppelberg C (2011) An oracle inequality for penalised projection estimation of Lévy densities from high-frequency observations. J Nonparametr Stat 23:967–989

    Article  MATH  MathSciNet  Google Scholar 

  • van Es B, Gugushvili S, Spreij P (2007) A kernel type nonparametric density estimator for decompounding. Bernoulli 13:672–694

    Google Scholar 

  • Zhao Z, Wu WB (2009) Nonparametric inference of discretely sampled stable Lévy processes. J Econom 153:83–92

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentine Genon-Catalot.

Appendices

Appendix 1: Proofs

1.1 Proof of Proposition 21

The joint distribution of \((S_1, Z_1)\) is elementary using that the increments \(X_{j\Delta }-X_{(j-1)\Delta }\) are i.i.d.. The process \((X_{j\Delta }^x= x+X_{j\Delta }, j\ge 1)\) is strong Markov. We denote by \({\mathbb {P}}_x\) its distribution on the canonical space \({\mathbb {R}}^{{\mathbb {N}}}\), denote by \((X_j, j\ge 0)\) the canonical process of \({\mathbb {R}}^{{\mathbb {N}}}\) and by \({\mathcal {F}}_j=\sigma (X_k, k\le j)\) the canonical filtration. Let \(\theta :{\mathbb {R}}^{{\mathbb {N}}} \rightarrow {\mathbb {R}}^{{\mathbb {N}}}\) denote the shift operator. Consider the stopping times built on the canonical process \(S_0=0\),

$$\begin{aligned} S_i= \inf \{j > S_{i-1}, X_{j}-X_{j-1}\ne 0\}, i\ge 1, \end{aligned}$$

and let

$$\begin{aligned} Z_i= X_{S_i }- X_{S_i-1 }. \end{aligned}$$

Because the \(S_i\)’s are built using the increments \((X_{j}-X_{j-1}, j\ge 1)\), their distributions under \({\mathbb {P}}_x\) are independent of the initial condition \(x\). We have \(S_i=S_{i-1}+ S_1\circ \theta _{S_{i-1}}\). The process \((X_{S_{i-1}+j} -X_{S_{i-1}}=(X_j-X_0)\circ \theta _{S_{i-1}}, j\ge 0) \) is independent of \({\mathcal {F}}_{S_{i-1}}\) and has distribution \({\mathbb {P}}_0\) and \(Z_i= Z_1 \circ \theta _{S_{i-1}}\). Consequently,

$$\begin{aligned} {\mathbb {E}}_x(\varphi (S_i-S_{i-1})\psi (Z_i)|{\mathcal {F}}_{S_{i-1}})= {\mathbb {E}}_0(\varphi (S_1)\psi (Z_1)). \end{aligned}$$

By iterate conditioning, we get the result. \(\square \)

1.2 Proof of Proposition 22

Let us set

$$\begin{aligned} p(\Delta )=1-e^{-c\Delta }= \frac{e^{c\Delta }-1}{e^{c\Delta }}. \end{aligned}$$

An elementary computation yields:

$$\begin{aligned} c\Delta = \log { \left( \frac{x}{x-1} \right) } \quad \text{ with }\quad x:=x(\Delta )=\frac{1}{p(\Delta )}= 1+\frac{1}{e^{c\Delta }-1}>1, \end{aligned}$$

and

$$\begin{aligned} \frac{(e^{c\Delta } - 1)^m}{c\Delta }= H_m(x). \end{aligned}$$

As the standard maximum likelihood (and unbiased) estimator of \(1/p(\Delta )\) computed from the sample \((S_i-S_{i-1}, i=1, \ldots ,n)\) is \(S_n/n \ge 1\), we are tempted to estimate \(H_m(x)\) by \(H_m(S_n/n)\). This is not possible as \(S_n/n \) may be equal to \(1\). This is why we introduce a truncation. Set \(u_0= \Delta / (e^{c_0\Delta /2}-1), \; u_1= \Delta /(e^{2c_1\Delta }-1), u= \Delta /(e^{c \Delta }-1) \). Note that

$$\begin{aligned} 1 +\frac{u_1}{\Delta }< x= 1+\frac{u}{\Delta }< 1 +\frac{u_0}{\Delta }. \end{aligned}$$

We have

$$\begin{aligned} \widehat{c_m(\Delta )}-c_m(\Delta )= H_m(S_n/n)1_{(1+ \frac{u_1}{\Delta } \le \frac{S_n}{n} \le 1+ \frac{u_0}{\Delta })} - H_m(x)= A_1+A_2 \end{aligned}$$

with

$$\begin{aligned} A_1= \left( H_m(S_n/n) - H_m(x)\right) \;1_{\left( 1+ \frac{u_1}{\Delta } \le \frac{S_n}{n} \le 1+ \frac{u_0}{\Delta }\right) }, \end{aligned}$$

and

$$\begin{aligned} A_2= - H_m(x) \left( 1_{\left( \frac{S_n}{n} <1+ \frac{u_1}{\Delta }\right) }+ 1_{\left( \frac{S_n}{n}>1+ \frac{u_0}{\Delta }\right) }\right) . \end{aligned}$$

Thus, on the set \((1+ \frac{u_1}{\Delta } \le \frac{S_n}{n} \le 1+ \frac{u_0}{\Delta })\),

$$\begin{aligned} (H_m(S_n/n) - H_m(x))^2 \le \left( \frac{S_n}{n} - x\right) ^2 \sup _{\xi \in [ 1+\frac{u_1}{\Delta }, 1+\frac{u_0}{\Delta }] }( H^{'}_m(\xi ))^2. \end{aligned}$$

As

$$\begin{aligned} H^{'}_m(\xi )= -\frac{m}{(\xi -1)^{m+1} \; \log {\frac{\xi }{\xi -1}}} +\frac{1}{\xi (\xi -1)^{m+1} \; \log ^2{\frac{\xi }{\xi -1}}}, \end{aligned}$$

we have, for \(\xi \in [ 1+\frac{u_1}{\Delta }, 1+\frac{u_0}{\Delta }]\),

$$\begin{aligned} | H^{'}_m(\xi )|\le \frac{2\Delta ^{m}}{c_0 u_1^{m+1}} \left( m+ \frac{2}{u_1 c_0} \right) . \end{aligned}$$

Writing that \(e^{2c_1\Delta } -1=2c_1\Delta e^{2sc_1\Delta }\) for \(s\in (0,1)\), using that \(2c_1\Delta \le \log (2)\), we get \(1/u_1\le 4c_1\). As

$$\begin{aligned} {\mathbb {E}}\left( \frac{S_n}{n} - x\right) ^2 = \frac{1-p(\Delta )}{n p^2(\Delta ) }= \frac{e^{c\Delta }}{n(e^{c\Delta } -1)^2}, \end{aligned}$$

we get, using \(e^{c\Delta }-1\ge c\Delta \ge c_0\Delta \):

$$\begin{aligned} {\mathbb {E}}A_1^2 \le C_m' \frac{\Delta ^{2(m-1)}}{n}, \text{ with } C_m'=\frac{4\sqrt{2}(4c_1)^{2(m+1)}}{c_0^4}\left( m+\frac{8c_1}{c_0}\right) ^2. \end{aligned}$$

Then, we have, setting \(a_0= u_0 -u >0 , \;\; a_1= u-u_1>0\),

$$\begin{aligned}&{\mathbb {P}}\left( \frac{S_n}{n}<1+ \frac{u_1}{\Delta }\right) + {\mathbb {P}}\left( \frac{S_n}{n}>1+ \frac{u_0}{\Delta }\right) \\&\quad = {\mathbb {P}}\left( \frac{\Delta }{p(\Delta )}- \Delta \frac{S_n}{n}> a_1\right) + {\mathbb {P}}\left( \Delta \frac{S_n}{n}- \frac{\Delta }{p(\Delta )}>a_0\right) \\&\quad \le \left( \frac{1}{ a_1^2}+\frac{1}{ a_0^2}\right) \frac{\Delta ^2 \; e^{c\Delta }}{n(e^{c\Delta } -1)^2}. \end{aligned}$$

Thus, noting that \(u_0-u\ge 1/(2c_1)\) and \(u-u_1 \ge 1/(4\sqrt{2}c_0)\),

$$\begin{aligned} {\mathbb {E}}A_2^2 \le \left( \frac{1}{ a_1^2}+\frac{1}{ a_0^2}\right) \frac{(e^{c\Delta } -1)^{2(m-1)} e^{c\Delta }}{nc^2}\le C''_m\frac{\Delta ^{2(m-1)}}{n}, \end{aligned}$$
(23)

where

$$\begin{aligned} C''_m= 4\sqrt{2}\left[ 8c_0^2+ c_1^2\right] \frac{(4c_1)^{2(m-1)}}{c_0^2}. \end{aligned}$$

The proof is complete with \(C_m=2(C'_m+ C''_m)\). \(\square \)

1.3 Proof of Proposition 41

Consider \(f\) integrable with \(\Vert f\Vert _1=\int |f|\) and square integrable such that \(\int (1+x^2)^\alpha |f^*(x)|^2dx \le R\). Then

$$\begin{aligned}&\int (1+x^2)^\alpha |g^*(x)|^2 dx \\&\quad = \left( \frac{e^{-c \Delta }}{1-e^{-c \Delta }}\right) ^2 \sum _{m,k \ge 1} \frac{(c \Delta )^m}{m!}\frac{(c \Delta )^k}{k!} \int (1+x^2)^\alpha [f^*(x)]^{m}[f^*(-x)]^{k}dx \\&\quad \le \left( \frac{e^{-c \Delta }}{1-e^{-c \Delta }}\right) ^2 \sum _{m,k \ge 1} \frac{(c \Delta )^m}{m!}\frac{(c \Delta )^k}{k!} \Vert f\Vert _1^{m+k-2} \int (1+x^2)^\alpha |f^*(x)|^2dx\\&\quad \le R \left( \frac{e^{-c \Delta }}{1-e^{-c \Delta }}\right) ^2 \frac{1}{\Vert f\Vert _1^2} \left( \sum _{m \ge 1} \frac{(c \Delta )^m}{m!} \Vert f\Vert _1^{m}\right) ^2\\&\quad = R \left( \frac{e^{-c \Delta }}{1-e^{-c \Delta }}\frac{\exp (c\Delta \Vert f\Vert _1)-1}{\Vert f\Vert _1} \right) ^2 :=R(\Delta )<+\infty \end{aligned}$$

As \(f\) is a density, \(\Vert f\Vert _1=1\) and \(R(\Delta )=R\). This implies the announced result for \(g\). \(\square \)

1.4 Proof of Proposition 42

Recall that \(f^*= \sum _{m\ge 1} ((-1)^{m+1}/m) c_m(\Delta )(g^*)^m\) (see (6)–(7)). Let \(f_\ell \) be such that \(f^{*}_\ell = f^* \; 1_{[-\pi \ell , \pi \ell ]}\) and \(f_{K,\ell }\) be such that

$$\begin{aligned} f_{K,\ell }^{*}=1_{[-\pi \ell , \pi \ell ]} \sum _{m=1}^{K+1}\frac{(-1)^{m+1}}{m} c_m(\Delta ) (g^*)^m. \end{aligned}$$

Recall that \(\widetilde{f_{K,\ell }}\) (see (11)) is such that

$$\begin{aligned} (\widetilde{f_{K,\ell }})^{*}=1_{[-\pi \ell , \pi \ell ]} \sum _{m=1}^{K+1}\frac{(-1)^{m+1}}{m} c_m(\Delta ) \widehat{(g^*)^m}. \end{aligned}$$

We distinguish the first term of this development from the other ones and set

$$\begin{aligned} \widetilde{f_{K,\ell }}= \widetilde{f_{K,\ell }}^{(1)} + \widetilde{{\mathcal {R}} f_{K,\ell }}, \text{ with } \widetilde{f_{K,\ell }}^{(1)} = c_1(\Delta ) \widehat{g^{\star 1}_{\ell }}=c_1(\Delta ) \widehat{g_{\ell }}. \end{aligned}$$
(24)

Analogously, with \(g_\ell \) such that \(g^{*}_\ell = g^* \; 1_{[-\pi \ell , \pi \ell ]}\),

$$\begin{aligned} f_{K,\ell }= f_{K,\ell }^{(1)}+ {\mathcal {R}}f_{K,\ell }, \text{ with } f_{K,\ell }^{(1)}= c_1(\Delta )g_{\ell } \end{aligned}$$
(25)

The following decomposition of the \(L^2\)-norm holds:

$$\begin{aligned} \left\| f-\widehat{f_{K,\ell }}\right\|&\le \left\| f-f_\ell \right\| +\left\| f_\ell -f_{K,\ell }\right\| + \left\| f_{K,\ell }^{(1)}-\widetilde{f_{K,\ell }}^{(1)}\right\| \\&+ \left\| {\mathcal {R}}f_{K,\ell }-\widetilde{{\mathcal {R}}f_{K,\ell }}\right\| +\left\| \widetilde{f_{K,\ell }}-\widehat{f_{K,\ell }}\right\| , \end{aligned}$$

which involves two bias terms and two stochastic error terms. The first bias term is the usual deconvolution bias term:

$$\begin{aligned} \Vert f-f_\ell \Vert ^2 = \frac{1}{2 \pi } \int \limits _{_{|t|\ge \pi \ell }}|f^*(t)|^2 dt \end{aligned}$$

Noting that

$$\begin{aligned} f_\ell ^*-f_{K,\ell }^*= 1_{[-\pi \ell , \pi \ell ]} \sum _{m=K+2}^{\infty }\frac{(-1)^{m+1}}{m} c_m(\Delta ) (g^*)^m, \end{aligned}$$

we get, using that \(|g^*(t)|\le 1\) and \(\Vert g\Vert \le \Vert f\Vert \) (see Proposition 41):

$$\begin{aligned} 2\pi \Vert f_\ell -f_{K,\ell }\Vert ^2&= \Vert f_\ell ^*-f_{K,\ell }^*\Vert ^2 = \int \limits _{-\pi \ell }^{\pi \ell } \left| \sum _{m=K+2}^{\infty }\frac{(-1)^{m+1}}{m} c_m(\Delta ) (g^*)^m(t)\right| ^2dt \nonumber \\&\le \int \limits _{-\pi \ell }^{\pi \ell } \left( \sum _{m \ge K+2}\frac{1}{m} c_m(\Delta ) |g^*(t)| \right) ^2 dt \nonumber \\&\le 2\pi \Vert g\Vert ^2 \left( \sum _{m \ge K+2}\frac{1}{m} c_m(\Delta )\right) ^2\nonumber \\&\le \frac{2\pi \Vert f\Vert ^2 }{(c\Delta )^2(K+2)^2}\left( \frac{(e^{c\Delta }-1)^{K+2}}{2-e^{c\Delta }}\right) ^2\nonumber \\&\le \frac{4\pi \Vert f\Vert ^2 (\sqrt{2}c\Delta )^{2K+2}}{( (K+2)^2(2-e^{2\Delta }))^2}\le 2\pi A_K \Delta ^{2K+2}, \end{aligned}$$
(26)

where in the last line, we have used \(1/(2-e^{c\Delta })^2\le 1/(2-\sqrt{2})^2\le 3\) and \(e^{c\Delta }-1 \le \sqrt{2} c\Delta \) and \(A_K\) is given in (18).

To study the next term, we recall that, \({\mathbb {E}}(|\widehat{(g^*)(t)}-(g^*)(t)|^2)\le 1/n\). Then we get

$$\begin{aligned} 2\pi {\mathbb {E}}\left( \left\| f_{K,\ell }^{(1)}-\widetilde{f_{K,\ell }}^{(1)}\right\| ^2\right)&= \int \limits _{-\pi \ell }^{\pi \ell } {\mathbb {E}}\left( \left| c_1(\Delta ) [\widehat{(g^*)(t)}-(g^*)(t)]\right| ^2\right) dt \nonumber \\&\le \frac{2\pi \ell [c_1(\Delta )]^2}{n} \le \frac{4\pi \ell }{n} \end{aligned}$$
(27)

since \(c_1(\Delta )\le \sqrt{2}\).

Hereafter, we use inequality (15) of Proposition 31.

$$\begin{aligned}&2\pi {\mathbb {E}}\left( \left\| {\mathcal {R}}f_{K,\ell }-\widetilde{{\mathcal {R}}f_{K,\ell }}\right\| ^2\right) \\&\quad = \int \limits _{-\pi \ell }^{\pi \ell } {\mathbb {E}}\left( \left| \sum _{m=2}^{K+1}\frac{(-1)^{m+1}}{m} c_m(\Delta ) [\widehat{(g^*)^m(t)}-(g^*)^m(t)]\right| ^2\right) dt \\&\quad \le \int \limits _{-\pi \ell }^{\pi \ell }(K+1) \sum _{m=2}^{K+1}\frac{1}{m^2} [c_m(\Delta )]^2 {\mathbb {E}}\left( |\widehat{(g^*)^m(t)}-(g^*)^m(t)|^2 \right) dt\\&\quad \le 2\pi K \sum _{m=2}^{K+1} \frac{{\mathcal {E}}_m}{m^2} [c_m(\Delta )]^2\left( \frac{\ell }{n^m} + \frac{ \Vert g\Vert ^2}{n}\right) \end{aligned}$$

This yields, since \(c_m(\Delta )\le (\sqrt{2})^m(c\Delta )^{m-1}\) and \(\ell /n \le 1\),

$$\begin{aligned} {\mathbb {E}}\left( \Vert {\mathcal {R}}f_{K,\ell }-\widetilde{{\mathcal {R}}f_{K,\ell }}\Vert ^2\right) \le \frac{D_K}{n} \end{aligned}$$
(28)

with

$$\begin{aligned} D_K= K \sum _{m=2}^{K+1} \frac{2^m c^{2(m-1)}{\mathcal {E}}_m}{m^2} \Delta ^{2(m-1)}\left( \frac{1}{n^{m-2}} + \Vert g\Vert ^2\right) \end{aligned}$$

For the last term, we use Proposition 22, with the fact that the estimators \(\widehat{c_m(\Delta )} \) and \(\widehat{(g^*)^m(t)}\) are independent, and write

$$\begin{aligned}&2\pi {\mathbb {E}}\left( \left\| \widetilde{f_{K,\ell }}-\widehat{f_{K,\ell }}\right\| ^2\right) \\ \nonumber&\quad = \int \limits _{-\pi \ell }^{\pi \ell } {\mathbb {E}}\left( \left| \sum _{m=1}^{K+1}\frac{(-1)^{m+1}}{m}\left( \widehat{c_m(\Delta )} - c_m(\Delta )\right) \widehat{(g^*)^m(t)}\right| ^2dt\right) \nonumber \\&\quad \le 2 \int \limits _{-\pi \ell }^{\pi \ell } {\mathbb {E}}\left( \left| \sum _{m=1}^{K+1}\frac{(-1)^{m+1}}{m}\left( \widehat{c_m(\Delta )} - c_m(\Delta )\right) [\widehat{(g^*)^m(t)}-(g^*)^m(t)]\right| ^2dt\right) \nonumber \\&\qquad +\,\, 2 \int \limits _{-\pi \ell }^{\pi \ell } {\mathbb {E}}\left( \left| \sum _{m=1}^{K+1}\frac{(-1)^{m+1}}{m}\left( \widehat{c_m(\Delta )} - c_m(\Delta )\right) (g^*)^m(t)\right| ^2dt\right) \nonumber \\&\quad \le 2(K+1) \sum _{m=1}^{K+1} \frac{1}{m^2} \left\{ {\mathbb {E}}\left[ \left( \widehat{c_m(\Delta )} \!-\! c_m(\Delta )\right) ^2\right] \!\int _{-\pi \ell }^{\pi \ell } {\mathbb {E}}\left[ |\widehat{(g^*)^m(t)}\!-\!(g^*)^m(t)|^2\right] dt\right. \nonumber \\&\qquad \left. +\,\,{\mathbb {E}}\left[ \left( \widehat{c_m(\Delta )} - c_m(\Delta )\right) ^2\right] \int _{-\pi \ell }^{\pi \ell } |g^*(t)|^{2m}dt\right\} \nonumber \\&\quad \le 2(K+1)\left\{ \frac{C_1}{n} \left( \frac{2\pi \ell }{n} + 2\pi \Vert g\Vert ^2\right) \right. \nonumber \\&\qquad \left. +\,\, \sum _{m=2}^{K+1} \frac{C_m\Delta ^{2(m-1)}}{m^2}\left[ \frac{{\mathcal {E}}_m}{n} \int _{-\pi \ell }^{\pi \ell }\left( \frac{1}{n^m}+ \frac{1}{n}|g^*(t)|^2\right) dt + \frac{1}{n} \Vert g^*\Vert ^2\right] \right\} . \end{aligned}$$

Therefore

$$\begin{aligned} 2\pi {\mathbb {E}}\left( \left\| \widetilde{f_{K,\ell }}-\widehat{f_{K,\ell }}\right\| ^2\right) \le \frac{2\pi E_K}{n} \end{aligned}$$
(29)

using that \(\ell /n \le 1\) and

$$\begin{aligned} E_K=2(K+1) \left[ C_1(1+\Vert g\Vert ^2) + \sum _{m=2}^{K+1} \frac{C_m}{m^2}\Delta ^{2(m-1)}{\mathcal {E}}_m \left( \frac{1}{n^{m-1}}+2 \Vert g\Vert ^2\right) \right] . \end{aligned}$$

This ends the proof of the result with \(D_K+E_K\le B_K\) and \(\Vert g\Vert \le \Vert f\Vert \). \(\square \)

1.5 Proof of Theorem 41

Consider the contrast

$$\begin{aligned} \gamma _n(t)=\Vert t\Vert ^2 -2\langle t, \widehat{f_{K, L_n}}\rangle , \end{aligned}$$

and for \(\ell =1, \ldots , L_n\), the increasing sequence of spaces

$$\begin{aligned} S_\ell =\{ t\in {\mathbb {L}}^2\cap {\mathbb {L}}^1({\mathbb {R}}), \; \mathrm{supp}(t^*)\subset [-\pi \ell , \pi \ell ]\}. \end{aligned}$$

Note that, for \(\ell \le L_n\) and \(t\in S_\ell \), \(\gamma _n(t) =\Vert t\Vert ^2 -2\langle t, \widehat{f_{K,\ell }}\rangle ,\) and

$$\begin{aligned} \arg \min _{t\in S_\ell }\gamma _n(t) = \widehat{f_{K,\ell }}, \quad \text{ with } \quad \gamma _n(\widehat{f_{K,\ell }})=-\Vert \widehat{f_{K,\ell }}\Vert ^2. \end{aligned}$$

For \(\ell ,\ell *\le L_n, \,s\in S_\ell \) and \(t\in S_{\ell *}\), the following decomposition holds:

$$\begin{aligned} \gamma _n(t)-\gamma _n(s)= \Vert t-f\Vert ^2 -\Vert s-f\Vert ^2 -2\langle t-s, \widehat{f_{K,L_n}}-f\rangle \end{aligned}$$

and \(\langle t-s, \widehat{f_{K,L_n}}-f\rangle = \langle t-s, \widehat{f_{K,L_n}}-f_{L_n}\rangle \). By definition of the estimator,

$$\begin{aligned} \gamma _n(\widehat{f_{K,\hat{\ell }}})+ \mathrm{pen}(\hat{\ell }) \le \gamma _n(\widehat{f_{K,\ell }}) +\mathrm{pen}( \ell ) \le \gamma _n(f_{\ell }) +\mathrm{pen}( \ell ). \end{aligned}$$

Thus, we obtain, \(\forall \ell \in \{1, \dots , L_n\}\),

$$\begin{aligned} \Vert \widehat{f_{K,\hat{\ell }}}-f\Vert ^2&\le \Vert f_{\ell }-f\Vert ^2 + \mathrm{pen}(\ell )+ 2 \left\langle \widehat{f_{K,\hat{\ell }}} -f_{\ell }, \widehat{f_{K,L_n}} - f_{L_n}\right\rangle - \mathrm{pen}(\hat{\ell }) \nonumber \\&\le \Vert f_{\ell }-f\Vert ^2 + \mathrm{pen}(\ell )+ \frac{1}{4} \Vert \widehat{f_{K,\hat{\ell }}} -f_{\ell }\Vert ^2 \nonumber \\&+\,\, 4 \sup _{t\in S_{\ell }+S_{\hat{\ell }}, \Vert t\Vert =1} \left\langle t, \widehat{f_{K,L_n}} - f_{L_n}\right\rangle ^2 - \mathrm{pen}(\hat{\ell }) \end{aligned}$$
(30)

Then using

$$\begin{aligned} \frac{1}{4} \left\| \widehat{f_{K,\hat{\ell }}} -f_{\ell }\right\| ^2 \le \frac{1}{2} \left\| \widehat{f_{K,\hat{\ell }}} -f\right\| ^2 + \frac{1}{2} \Vert f -f_{\ell }\Vert ^2, \end{aligned}$$
(31)

and decompositions (24) and (25), we get

$$\begin{aligned} \left\langle t, \widehat{f_{K,L_n}} - f_{L_n}\right\rangle&= \left\langle t, \widehat{f_{K,L_n}} - \widetilde{f_{K,L_n}} \right\rangle + \left\langle t, \widetilde{f_{K,L_n}}^{(1)} - f_{K, L_n}^{(1)}\right\rangle \nonumber \\&+\,\, \left\langle t, {\mathcal {R}}\widetilde{f_{K,L_n}} - {\mathcal {R}}f_{K, L_n}\right\rangle + \left\langle t, f_{K,L_n}-f_{L_n}\right\rangle . \end{aligned}$$

By the Cauchy-Schwarz Inequality and for \(\Vert t\Vert =1\), we have

$$\begin{aligned} \left\langle t, \widehat{f_{K,L_n}} - f_{L_n}\right\rangle ^2&\le 4 \left\| \widehat{f_{K,L_n}} - \widetilde{f_{K,L_n}}\right\| ^2 + 4 \left\| {\mathcal {R}}\widetilde{f_{K,L_n}} - {\mathcal {R}}f_{K, L_n}\right\| ^2\nonumber \\&+\,\, 4 \Vert f_{K,L_n} - f_{L_n}\Vert ^2 + 4 \left\langle t, \widetilde{f_{K,L_n}}^{(1)}- f_{K,L_n}^{(1)}\right\rangle ^2. \end{aligned}$$
(32)

Thus, inserting (31) and (32) in (30) yields

$$\begin{aligned} \frac{1}{2} \left\| \widehat{f_{K,\hat{\ell }}}-f\right\| ^2&\le \frac{3}{2} \Vert f_{\ell }-f\Vert ^2 + 16 \Vert f_{K,L_n} - f_{L_n}\Vert ^2\nonumber \\&+\,\, 16 \left\| \widehat{f_{K,L_n}} - \widetilde{f_{K,L_n}}\right\| ^2+ 16\left\| {\mathcal {R}}\widetilde{f_{K,L_n}} - {\mathcal {R}}f_{K, L_n}\right\| ^2 + \mathrm{pen}(\ell ) \nonumber \\&+\,\, 16 \sup _{t\in S_{\ell \vee \hat{\ell }}, \Vert t\Vert =1} \left\langle t, \widetilde{f_{K,L_n}}^{(1)} - f_{K,L_n}^{(1)}\right\rangle ^2 - \mathrm{pen}(\hat{\ell }) \end{aligned}$$

Here, the bounds of Proposition 42 can be applied. Indeed (26), (28) and (29) are uniform with respect to \(\ell \) and imply

$$\begin{aligned} \Vert f_{K,L_n} - f_{L_n}\Vert ^2\le A_K\Delta ^{2(K+2)},\; {\mathbb {E}}\left( \Vert {\mathcal {R}}\widetilde{f_{K,L_n}} - {\mathcal {R}}f_{K, L_n}\Vert ^2\right) \le D_K/n, \end{aligned}$$

and

$$\begin{aligned} {\mathbb {E}}\left( \left\| \widehat{f_{K,L_n}} - \widetilde{f_{K,L_n}}\right\| ^2\right) \le E_K/n. \end{aligned}$$

Below, we prove using the Talagrand Inequality that

$$\begin{aligned} {\mathbb {E}}\left( \sup _{t\in S_{\ell \vee \hat{\ell }}, \Vert t\Vert =1} \langle t, \widetilde{f_{K,L_n}}^{(1)} - f_{K,L_n}^{(1)}\rangle ^2 -p(\ell ,\hat{\ell })\right) _+\le \frac{C'}{n}, \end{aligned}$$
(33)

where \(p(\ell ,\ell ')=8\ell \vee \ell '/n\) and \(16 p(\ell , \ell ')\le \mathrm{pen}(\ell )+ \mathrm{pen}(\ell ')\) as soon as \(\kappa \ge \kappa _0=16\times 8\).

Thus, we get \({\mathbb {E}}(16 p(\ell , \hat{\ell })-\mathrm{pen}(\hat{\ell }))\le \mathrm{pen}(\ell )\) and

$$\begin{aligned} {\mathbb {E}}\left( \left\| \widehat{f_{K,\hat{\ell }}}-f\right\| ^2\right) \le 4\Vert f-f_\ell \Vert ^2 + 4\mathrm{pen}(\ell ) + 32 A_K\Delta ^{2(K+2)} + 32\frac{B_K}{n} + \frac{32 C'}{n}. \end{aligned}$$

Proof of 33

We consider \(t\in S_{\ell ^*}\) for \(\ell ^*=\ell \vee \ell '\) with \(\ell , \ell ' \le L_n\) and (see (24) and (25))

$$\begin{aligned} \nu _n(t)= c_1(\Delta ) \langle t, {\hat{g}}_{L_n} -g_{L_n}\rangle = \frac{1}{n}\sum _{k=1}^n (\psi _t(Z_k)-{\mathbb {E}}(\psi _t(Z_k))) \end{aligned}$$

where

$$\begin{aligned} \psi _t(z)= \frac{c_1(\Delta )}{2\pi }\int t^*(u)e^{iuz}du=c_1(\Delta ) t(z). \end{aligned}$$

We apply the Talagrand Inequality recalled in Sect. 8, and to this aim, we compute the quantities \(M, H, v\). First

$$\begin{aligned} \sup _{t\in S_{\ell ^*}, \Vert t\Vert =1}\sup _z |\psi _t(z)|\le \frac{c_1(\Delta )}{2\pi }\sqrt{2\pi \ell ^*} \times \sup _{t\in S_{\ell ^*}, \Vert t\Vert =1}\Vert t^*\Vert =c_1(\Delta ) \sqrt{\ell ^*}:=M. \end{aligned}$$

The density of \(Z_1\) is \(g\) which satisfies

$$\begin{aligned} \Vert g\Vert _{\infty } \le \sum _{m\ge 1} \frac{1}{e^{c \Delta }-1} \frac{(c \Delta )^m}{m!} \Vert f^{\star \;m}\Vert _{\infty }\le \Vert f\Vert _{\infty }. \end{aligned}$$

Therefore,

$$\begin{aligned} \sup _{t\in S_{\ell ^*}, \Vert t\Vert =1}\mathrm{Var}(\psi _t(Z_1))\le c_1^2(\Delta ) \times \sup _{t\in S_{\ell ^*}, \Vert t\Vert =1}{\mathbb {E}}(t^2(Z_1))\le c_1^2(\Delta )\Vert f\Vert _\infty :=v. \end{aligned}$$

Lastly, using the bound in (27) and the fact that for \(t\in S_{\ell ^*}\),

$$\begin{aligned} \left\langle t, \widetilde{f_{K,L_n}}^{(1)} - f_{K,L_n}^{(1)}\right\rangle =\left\langle t, \widetilde{f_{K,\ell ^*}}^{(1)} - f_{K,\ell ^*}^{(1)}\right\rangle , \end{aligned}$$

we get

$$\begin{aligned} {\mathbb {E}}\left( \sup _{t\in S_{\ell ^*}, \Vert t\Vert =1}\nu _n^2(t)\right)&= {\mathbb {E}}\left( \sup _{t\in S_{\ell ^*}, \Vert t\Vert =1} \left\langle t, \widetilde{f_{K,\ell ^*}}^{(1)} - f_{K,\ell ^*}^{(1)}\right\rangle ^2\right) \\&\le {\mathbb {E}}\left( \left\| \widetilde{f_{K,\ell ^*}}^{(1)} - f_{K,\ell ^*}^{(1)}\right\| ^2 \right) \ \le \frac{2\ell ^*}{n}:=H^2. \end{aligned}$$

Therefore, Lemma 81 yields with \(\epsilon ^2=1/2\),

$$\begin{aligned} {\mathbb {E}}\left( \sup _{t\in S_{\ell ^*}, \Vert t\Vert =1}\nu _n^2(t)-4H^2\right) \le \frac{A_1}{n}\left( e^{-A_2\ell ^*} + e^{-A_3 \sqrt{n}}\right) \end{aligned}$$

for constants \(A_1, A_2, A_3\) depending on \(c_1(\Delta )\) and \(\Vert f\Vert _\infty \). Now since

$$\begin{aligned} \sum _{\ell '=1}^{L_n} e^{-A_2\ell \vee \ell '}=\ell e^{-A_2\ell } + \sum _{\ell <\ell '\le L_n}e^{-A_2\ell '} \end{aligned}$$

is bounded by say \(B_2\) and \(L_n e^{-A_3\sqrt{n}}\) is bounded by \(B_3\), we get

$$\begin{aligned} {\mathbb {E}}\left( \sup _{t\in S_{\ell \vee \hat{\ell }}, \Vert t\Vert =1}\nu _n^2(t)-8\frac{\ell \vee \hat{\ell }}{n} \right) \le \sum _{\ell '} {\mathbb {E}}\left( \sup _{t\in S_{\ell \vee \ell '}, \Vert t\Vert =1}\nu _n^2(t)-4H^2\right) \le \frac{B_4}{n}. \end{aligned}$$

This ends the proof of (33) and thus of Theorem 41. \(\square \)

Appendix 2

The result below follows from the Talagrand concentration inequality given in Klein and Rio (2005) and arguments in Birgé and Massart (1998) (see the proof of their Corollary 2 page 354).

Lemma 81

(Talagrand Inequality) Let \(Y_1, \dots , Y_n\) be independent random variables, let \(\nu _{n,Y}(f)=(1/n)\sum _{i=1}^n [f(Y_i)-{\mathbb {E}}(f(Y_i))]\) and let \({\mathcal {F}}\) be a countable class of uniformly bounded measurable functions. Then for \(\epsilon ^2>0\)

$$\begin{aligned}&{\mathbb {E}}\Big [\sup _{f\in {\mathcal {F}}}|\nu _{n,Y}(f)|^2-2(1+2\epsilon ^2)H^2\Big ]_+ \\&\quad \le \frac{4}{K_1}\left( \frac{v}{n} e^{-K_1\epsilon ^2 \frac{nH^2}{v}} + \frac{98M^2}{K_1n^2C^2(\epsilon ^2)} e^{-\frac{2K_1 C(\epsilon ^2)\epsilon }{7\sqrt{2}}\frac{nH}{M}}\right) , \end{aligned}$$

with \(C(\epsilon ^2)=\sqrt{1+\epsilon ^2}-1,\, K_1=1/6\), and

$$\begin{aligned} \sup _{f\in {\mathcal {F}}}\Vert f\Vert _{\infty }\le M, \;\;\;\; {\mathbb {E}}\Big [\sup _{f\in {\mathcal {F}}}|\nu _{n,Y}(f)|\Big ]\le H, \; \sup _{f\in {\mathcal {F}}}\frac{1}{n}\sum _{k=1}^n\mathrm{Var}(f(Y_k)) \le v. \end{aligned}$$

By standard density arguments, this result can be extended to the case where \({\mathcal {F}}\) is a unit ball of a linear normed space, after checking that \(f\mapsto \nu _n(f)\) is continuous and \({\mathcal {F}}\) contains a countable dense family.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Comte, F., Duval, C. & Genon-Catalot, V. Nonparametric density estimation in compound Poisson processes using convolution power estimators. Metrika 77, 163–183 (2014). https://doi.org/10.1007/s00184-013-0475-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00184-013-0475-3

Keywords

Mathematics Subject Classification (2000)

Navigation