Skip to main content
Log in

Shrinkage estimation for the mean of the inverse Gaussian population

  • Published:
Metrika Aims and scope Submit manuscript

Abstract

We consider improved estimation strategies for a two-parameter inverse Gaussian distribution and use a shrinkage technique for the estimation of the mean parameter. In this context, two new shrinkage estimators are suggested and demonstrated to dominate the classical estimator under the quadratic risk with realistic conditions. Furthermore, based on our shrinkage strategy, a new estimator is proposed for the common mean of several inverse Gaussian distributions, which uniformly dominates the Graybill–Deal type unbiased estimator. The performance of the suggested estimators is examined by using simulated data and our shrinkage strategies are shown to work well. The estimation methods and results are illustrated by two empirical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ahmad KE, Jaheen ZF (1995) Approximate Bayes estimators applied to the inverse Gaussian lifetime model. Comput Math Appl 29(12):39–47

    Article  MATH  Google Scholar 

  • Ahmad M, Chaubey YP, Sinha BK (1991) Estimation of a common mean of several univariate inverse Gaussian populations. Ann Inst Stat Math 43(2):357–367

    Article  MATH  MathSciNet  Google Scholar 

  • Ahmed SE (1998) Large-sample estimation strategies for eigenvalues of a Wishart matrix. Metrika 47:35–45

    Article  MATH  MathSciNet  Google Scholar 

  • Ahmed SE, Liu S (2009) Asymptotic theory of simultaneous estimation of Poisson means. Linear Algebra Its Appl 430:2734–2748

    Article  MATH  MathSciNet  Google Scholar 

  • Ahmed SE, Nicol C (2012) An application of shrinkage estimation to the nonlinear regression model. Comput Stat Data Anal 56:3309–3321

    Article  MATH  MathSciNet  Google Scholar 

  • Ahmed SE, Hussein AA, Sen PK (2006) Risk comparison of some shrinkage M-estimators in linear models. J Nonparametric Stat 18:401–415

    Article  MATH  MathSciNet  Google Scholar 

  • Ahmed SE, Doksum KA, Hossain S, You J (2007) Shrinkage, pretest and absolute penalty estimators in partially linear models. Aust NZ J Stat 49:435–454

    Article  MATH  MathSciNet  Google Scholar 

  • Balakrishnan N, Leiva V, Sanhueza A, Cabrera E (2009) Mixture inverse Gaussian distribution and its transformations, moments and applications. Statistics 43:91–104

    Article  MATH  MathSciNet  Google Scholar 

  • Brown LD, Cohen A (1974) Point and cofidence estimation of a common mean and recovery of inter-block information. Ann Stat 2:963–976

    Article  MATH  MathSciNet  Google Scholar 

  • Chhikara RS, Folks JL (1977) The inverse Gaussian distribution as a lifetime model. Technometrics 19: 461–468

    Article  MATH  Google Scholar 

  • Chhikara RS, Folks JL (1989) The inverse Gaussian distribution: theory, methodology, and applications. Marcel Dekker, New York

    MATH  Google Scholar 

  • Chiou P, Miao WW (2005) Shrinakge estimation for the difference between exponential guarantee time parameters. Comput Stat Data Anal 48:489–507

    Article  MATH  MathSciNet  Google Scholar 

  • Fisher TJ, Sun XQ (2011) Improved Stein-type shrinkage estimators for the high-dimensional multivariate normal covariance matrix. Comput Stat Data Anal 55:1909–1918

    Article  MathSciNet  Google Scholar 

  • Gao JX, Hitchcock DB (2010) James-stein shrinkage to improve k-means clusters analysis. Comput Stat Data Anal 54:2113–2127

    Article  MATH  MathSciNet  Google Scholar 

  • Graybill FA, Deal RB (1959) Combining unbiased estimators. Biometrics 15:543–550

    Article  MATH  MathSciNet  Google Scholar 

  • Gross J (2003) Linear regression. Springer, Berlin

    Book  MATH  Google Scholar 

  • Gruber MHJ (2010) Regression estimators: a comparative study, 2nd edn. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Gupta RC, Akman HO (1995) Bayes estimation in a mixture inverse Gaussian model. Ann Inst Stat Math 47(3):493–503

    MATH  MathSciNet  Google Scholar 

  • Hartung J, Knapp G, Sinha BK (2008) Statistical meta-analysis with applications. Wiley, New York

    Book  Google Scholar 

  • Hsieh HK, Korwar RM, Rukhin AL (1990) Inadmissibility of the maximum likelihood estimator of the inverse Gaussian mean. Stat Probab Lett 9:83–90

    Article  MATH  MathSciNet  Google Scholar 

  • James W, Stein C (1961) Estimation with quadratic loss. In: Proceedings of the fourth Berleley symposium on mathematical statistics and Probability, Vol I. Univ. California Press, Berkeley, pp 361–379

  • Jorgensen B (1982) Statistical properties of the generalized inverse Gaussian distribution. Springer, New York

    Book  Google Scholar 

  • Khatri CG, Shah KR (1974) Estimation of the location parameters from two linear models under normality. Commun Stat Theory Methods 3:647–663

    Article  MATH  MathSciNet  Google Scholar 

  • Krishnamoorthy K, Tian LL (2008) Inferences on the difference and ratio of the means of two inverse Gaussian distributions. J Stat Plan Inference 138:2082–2089

    Article  MATH  MathSciNet  Google Scholar 

  • Kumar S, Tripathi YM, Misra N (2005) James-Stein type estimators for ordered normal means. J Stat Comput Simul 75(7):501–511

    Article  MATH  MathSciNet  Google Scholar 

  • Kuriki S, Takemura A (2000) Shrinkage estimation towards a closed convex set with a smooth boundary. J Multivar Anal 75(1):79–111

    Article  MATH  MathSciNet  Google Scholar 

  • Lin SH, Wu IM (2011) On the common mean of several inverse Gaussian distributions based on a higher order likelihood method. Appl Math Comput 217:5480–5490

    Article  MATH  MathSciNet  Google Scholar 

  • Ma TF, Jia LJ, Su YS (2012) A new estimator of covariance matrix. J Stat Plan Inference 142:529–536

    Article  MATH  MathSciNet  Google Scholar 

  • Ma TF, Liu S (2013) Estimation of order-restricted means of two normal populations under the LINEX loss function. Metrika 76:409–425

    Article  MATH  MathSciNet  Google Scholar 

  • Ma TF, Ye RD, Jia LJ (2011) Finite-sample properties of the Graybill–Deal estimator. J Stat Plan Inference 141:3675–3680

    Article  MATH  MathSciNet  Google Scholar 

  • MacGibbon B, Shorrock G (1997) Shrinkage estimators for the dispersion parameter of the inverse Gaussian distribution. Stat Probab Lett 32:207–214

    Article  MATH  MathSciNet  Google Scholar 

  • Maruyama Y, Straederman WE (2005) Necessary conditions for dominating the James–Stein estimator. Ann Inst Stat Math 57:157–165

    Article  MATH  Google Scholar 

  • Masuda H (2009) Notes on estimating inverse-Gaussian and gamma subordinators under high-frequency sampling. Ann Inst Stat Math 61:181–195

    Article  MATH  MathSciNet  Google Scholar 

  • Nair KA (1986) Distribution of an estimator of the common mean of two normal populations. Ann Stat 8:212–216

    Article  Google Scholar 

  • Norwood TE, Hinkelmann K (1977) Estimating the common mean of several normal populations. Ann Stat 5:1047–1050

    Article  MATH  MathSciNet  Google Scholar 

  • Prakash G, Singh DC (2006) Shrinkage testimators for the inverse dispersion of the inverse Gaussian distribution under the Linex loss function. Austrian J Stat 35:463–470

    Google Scholar 

  • Raheem SME, Ahmed SE, Doksum KA (2012) Absolute penalty and shrinkage estimation in partially linear models. Comput Stat Data Anal 56:874–891

    Article  MATH  MathSciNet  Google Scholar 

  • Sanhueza A, Leiva V, Balakrishnan N (2008) A new class of inverse Gaussian type distributions. Metrika 68:31–49

    Article  MathSciNet  Google Scholar 

  • Schrodinger E (1915) Zur theorie der Fall-und Steigversuche an Teilchen mit Brownscher Bewegung. Physikalische Zeitschrift 16:289–295

    Google Scholar 

  • Shapiro CM, Beckmann E, Christiansen N, Bitran JD, Kozloff M, Billings AA, Telfer MC (1987) Immunologic status of patients in remission from Hodgkin’s disease and disseminated malignancies. Amer J Medical Sci 293:366–370

    Google Scholar 

  • Tutz G, Leitenstorfer F (2006) Response shrinkage estimators in binary regression. Comput Stat Data Anal 50:2878–2901

    Article  MATH  MathSciNet  Google Scholar 

  • Tweedie MCK (1957) Statistical properties of inverse Gaussian distributions. Ann Math Stat 28:362–377

    Article  MATH  MathSciNet  Google Scholar 

  • Ye RD, Ma TF, Wang SG (2010) Inferences on the common mean of several inverse Gaussian populations. Comput Stat Data Anal 54:906–915

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors would like to thank two anonymous referees and the Editor for many helpful suggestions that have significantly improved the presentation of the manuscript. The research of Tiefeng Ma was supported by Zhejiang Provincial Natural Science Foundation (No. Y6100053) of China. The research of S. E. Ahmed was supported by the Natural Sciences and the Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuangzhe Liu.

Appendices

Appendix A: Proofs

1.1 A.1 Proof for Theorem 1

Denote \(\Delta = R(\mu ,\tilde{\mu }_{\lambda }) - R(\mu ,\bar{X})\). It is easy to see that

$$\begin{aligned} R(\mu ,\tilde{\mu }_{\lambda })&= \frac{1}{\mu ^{3}}E\left[ \left( 1-\frac{c}{n\lambda +4a}\text { exp }\{{-a/\bar{X}}\}\right) \bar{X}-\mu \right] ^{2} \nonumber \\&= R(\mu ,\bar{X})-\frac{2c}{(n\lambda +4a)\mu ^{3}}E[(\bar{X}-\mu )\bar{X}\text { exp }\{{-a/\bar{X}}\}] \nonumber \\&\quad +\frac{c^{2}}{(n\lambda +4a)^{2}\mu ^{3}}E(\bar{X}^{2}\text { exp }\{{-2a/\bar{X}}\}) \nonumber \\&= R(\mu ,\bar{X})+\Delta . \end{aligned}$$
(8.1)

Next, we rewrite \(\Delta \) and provide a simple condition for \(\Delta <0\). Using \(\bar{X}\sim IG(\mu ,n\lambda )\) and Lemma 2, we get

$$\begin{aligned} \Delta&= -\frac{2c}{(n\lambda +4a)\mu }\left( \frac{\mu }{n\lambda }+\frac{\sqrt{n\lambda +2a}}{\sqrt{n\lambda }}-1\right) \text { exp }\left\{ \frac{n\lambda -\sqrt{n\lambda (n\lambda +2a)}}{\mu }\right\} \nonumber \\&\quad +\frac{c^{2}}{(n\lambda +4a)^{2}\mu } \left( \frac{\mu }{n\lambda }+\frac{\sqrt{n\lambda +4a}}{\sqrt{n\lambda }}\right) \text { exp }\left\{ \frac{n\lambda -\sqrt{n\lambda (n\lambda +4a)}}{\mu }\right\} \nonumber \\&= -\frac{2c}{\lambda (n\lambda +4a)n} \text { exp }\left\{ \frac{n\lambda -\sqrt{n\lambda (n\lambda +2a)}}{\mu }\right\} \nonumber \\&\quad +\frac{c^{2}}{\lambda (n\lambda +4a)^{2}n} \text { exp }\left\{ \frac{n\lambda -\sqrt{n\lambda (n\lambda +4a)}}{\mu }\right\} \nonumber \\&\quad -\frac{2c}{(n\lambda +4a)\mu }\frac{\sqrt{n\lambda +2a}-\sqrt{n\lambda }}{\sqrt{n\lambda }} \text { exp }\left\{ \frac{n\lambda -\sqrt{n\lambda (n\lambda +2a)}}{\mu }\right\} \nonumber \\&\quad +\frac{c^{2}}{(n\lambda +4a)^{2}\mu } \frac{\sqrt{n\lambda +4a}}{\sqrt{n\lambda }} \text { exp }\left\{ \frac{n\lambda -\sqrt{n\lambda (n\lambda +4a)}}{\mu }\right\} \nonumber \\&= J_{1}+J_{2}, \end{aligned}$$
(8.2)

where

$$\begin{aligned} J_{1}&= \frac{c^{2}}{\lambda (n\lambda +4a)^{2}n} \text { exp }\left\{ \frac{n\lambda -\sqrt{n\lambda (n\lambda +4a)}}{\mu }\right\} \\&\quad - \frac{2c}{\lambda (n\lambda +4a)n} \text { exp }\left\{ \frac{n\lambda -\sqrt{n\lambda (n\lambda +2a)}}{\mu }\right\} \!,\\ J_{2}&= -\frac{2c}{(n\lambda +4a)\mu }\frac{\sqrt{n\lambda +2a}-\sqrt{n\lambda }}{\sqrt{n\lambda }} \text { exp }\left\{ \frac{n\lambda -\sqrt{n\lambda (n\lambda +2a)}}{\mu }\right\} \\&\quad +\frac{c^{2}}{(n\lambda +4a)^{2}\mu } \frac{\sqrt{n\lambda +4a}}{\sqrt{n\lambda }}\text { exp }\left\{ \frac{n\lambda -\sqrt{n\lambda (n\lambda +4a)}}{\mu }\right\} \!. \end{aligned}$$

Therefore, it follows from \(\text { exp }\left\{ \frac{n\lambda -\sqrt{n\lambda (n\lambda +4a)}}{\mu }\right\} <\text { exp }\left\{ \frac{n\lambda -\sqrt{n\lambda (n\lambda +2a)}}{\mu }\right\} \) that a sufficient condition for \(\Delta <0\) is

$$\begin{aligned}&2(n\lambda +4a)\ge c,\end{aligned}$$
(8.3a)
$$\begin{aligned}&2(n\lambda +4a)(\sqrt{n\lambda +2a}-\sqrt{n\lambda })\ge c\sqrt{n\lambda +4a}. \end{aligned}$$
(8.3b)

This is a relaxed condition, and it obviously holds when \(2a \ge c > 0\).

This completes the proof.

1.2 A.2 Proof for Theorem 2

Similar to the proof of Theorem 1, we get

$$\begin{aligned} \Delta&= R(\mu ,\tilde{\mu }_{U})-R(\mu ,\bar{X}) \nonumber \\&= -\frac{1}{\mu ^{3}}E\left[ \frac{2c}{n/S+4a}\right] E[(\bar{X}-\mu )\bar{X}e^{-a/\bar{X}}] +\frac{1}{\mu ^{3}}E\left[ \frac{c^{2}}{(n/S+4a)^{2}}\right] E[\bar{X}^{2}e^{-2a/\bar{X}}] \nonumber \\&= -E\left[ \frac{2c\lambda }{(n/S+4a)\mu }\right] \left( \frac{\mu }{n\lambda }+\frac{\sqrt{n\lambda +2a}}{\sqrt{n\lambda }}-1\right) \text { exp }\left\{ \frac{n\lambda -\sqrt{n\lambda (n\lambda +2a)}}{\mu }\right\} \nonumber \\&\quad +E\left[ \frac{c^{2}}{(n/S+4a)^{2}\mu }\right] \left( \frac{\mu }{n\lambda }+\frac{\sqrt{n\lambda +4a}}{\sqrt{n\lambda }}\right) \text { exp }\left\{ \frac{n\lambda -\sqrt{n\lambda (n\lambda +4a)}}{\mu }\right\} \nonumber \\&= -E\left[ \frac{2c}{\lambda (n/S+4a)n}\right] \text { exp }\left\{ \frac{n\lambda -\sqrt{n\lambda (n\lambda +2a)}}{\mu }\right\} \nonumber \\&\quad +E\left[ \frac{c^{2}}{\lambda (n/S+4a)^{2}n}\right] \text { exp }\left\{ \frac{n\lambda -\sqrt{n\lambda (n\lambda +4a)}}{\mu }\right\} \nonumber \\&\quad -E\left[ \frac{2c}{(n/S+4a)\mu }\right] \frac{\sqrt{n\lambda +2a}-\sqrt{n\lambda }}{\sqrt{n\lambda }} \text { exp }\left\{ \frac{n\lambda -\sqrt{n\lambda (n\lambda +2a)}}{\mu }\right\} \nonumber \\&\quad +E\left[ \frac{c^{2}}{(n/S+4a)^{2}\mu }\right] \frac{\sqrt{n\lambda +4a}}{\sqrt{n\lambda }} \text { exp }\left\{ \frac{n\lambda -\sqrt{n\lambda (n\lambda +4a)}}{\mu }\right\} \nonumber \\&= L_{1}+L_{2}, \end{aligned}$$
(8.4)

where

$$\begin{aligned} L_{1}&= E\left[ \frac{c^{2}}{\lambda (n/S+4a)^{2}n}\right] \text { exp }\left\{ \frac{n\lambda -\sqrt{n\lambda (n\lambda +4a)}}{\mu }\right\} \\&\quad -E\left[ \frac{2c}{\lambda (n/S+4a)n}\right] \text { exp }\left\{ \frac{n\lambda -\sqrt{n\lambda (n\lambda +2a)}}{\mu }\right\} \!,\\ L_{2}&= E\left[ \frac{c^{2}}{(n/S+4a)^{2}\mu }\right] \frac{\sqrt{n\lambda +4a}}{\sqrt{n\lambda }}\text { exp }\left\{ \frac{n\lambda -\sqrt{n\lambda (n\lambda +4a)}}{\mu }\right\} \\&\quad -E\left[ \frac{2c}{(n/S+4a)\mu }\right] \frac{\sqrt{n\lambda +2a}-\sqrt{n\lambda }}{\sqrt{n\lambda }} \text { exp }\left\{ \frac{n\lambda -\sqrt{n\lambda (n\lambda +2a)}}{\mu }\right\} \!. \end{aligned}$$

Obviously, \(\Delta <0\) when \(L_{1}<0\) and \(L_{2}<0\). Note that

$$\begin{aligned} \text { exp }\left\{ \frac{n\lambda -\sqrt{n\lambda (n\lambda +4a)}}{\mu }\right\} <\text { exp }\left\{ \frac{n\lambda - \sqrt{n\lambda (n\lambda +2a)}}{\mu }\right\} \!. \end{aligned}$$

Then \(\Delta <0\) is true if the following two inequalities hold

$$\begin{aligned}&E\left[ \frac{2c}{(n/S+4a)n}\right] \ge E\left[ \frac{c^{2}}{(n/S+4a)^{2}n}\right] \!, \end{aligned}$$
(8.5a)
$$\begin{aligned}&(\sqrt{n\lambda +2a}-\sqrt{n\lambda })E\left[ \frac{2c\lambda }{(n/S+4a)\mu }\right] \ge \sqrt{n\lambda +4a}E\left[ \frac{c^{2}\lambda }{(n/S+4a)^{2}\mu }\right] \!.\quad \quad \end{aligned}$$
(8.5b)

It is easy to see that (8.5b) is a sufficient condition for (8.5a). Then we get that \(\Delta <0\) if (8.5b) is true. Next, we discuss (8.5b).

Note that \(\sqrt{n\lambda +2a}-\sqrt{n\lambda }=\frac{2a}{\sqrt{n\lambda +2a}+\sqrt{n\lambda }}>\frac{a}{\sqrt{n\lambda +4a}}\). After some manipulation, a sufficient condition for (8.5b) is found to be

$$\begin{aligned} E\left[ \frac{2ac(n/S+4a)-c^{2}(n\lambda +4a)}{(n/S+4a)^{2}}\right] \ge 0. \end{aligned}$$
(8.6)

Obviously, (8.6) is equivalent to

$$\begin{aligned} E\left[ \frac{2acnS-(c^{2}n\lambda +4ac(c-2a))S^{2}}{(n+4aS)^{2}}\right] \ge 0. \end{aligned}$$
(8.7)

Using \(c\le 2a\), from (8.5) to (8.6), we get a sufficient condition for \(\Delta <0\)

$$\begin{aligned} E\left[ \frac{2aS-c\lambda S^{2}}{(n+4aS)^{2}}\right] \ge 0. \end{aligned}$$
(8.8)

It follows from Lemma 1 that

$$\begin{aligned} E\left[ \frac{2aS-c\lambda S^{2}}{(n+4aS)^{2}}\right] \ge E\left[ \frac{2aS-c\lambda S^{2}}{(n+8a^{2}/c\lambda )^{2}}\right] =\frac{\frac{2a(n-1)}{n\lambda }-\frac{c(n^{2}-1)}{n^{2}\lambda }}{(n+8a^{2}/c\lambda )^{2}}, \end{aligned}$$
(8.9)

where the equality holds when \(n\lambda S\) is distributed as \(\chi _{n-1}^{2}\).

From (8.8) and (8.9), it is therefore enough to see that \(\Delta <0\) holds for \(0<c\le \frac{2an}{n+1}\).

This completes the proof.

1.3 A.3 Proof for Theorem 3

Note that

$$\begin{aligned} R(\tilde{\mu }_{S},\mu )&= E(\tilde{\mu }_{S}-\mu )^{2}/\mu ^{3}\nonumber \\&= \frac{1}{\mu ^{3}}E\left[ \frac{1}{\sum _{i=1}^{k}\frac{n_{i}-1}{S_{i}}} \sum _{i=1}^{k}\frac{n_{i}-1}{S_{i}}\left( \left( 1-\frac{c_{i}}{n_{i}/S_{i}+4a_{i}}\text { exp }\{-a_{i}/\bar{X}_{i}\}\right) \bar{X}_{i}-\mu \right) \right] ^{2}\nonumber \\&= \frac{1}{\mu ^{3}}E\left[ \frac{1}{\sum _{i=1}^{k}\frac{n_{i}-1}{S_{i}}} \sum _{i=1}^{k}\frac{n_{i}-1}{S_{i}}\left( \bar{X}_{i}-\mu -\frac{c_{i}}{n_{i}/S_{i}+4a_{i}}\text { exp }\{-a_{i}/\bar{X}_{i}\}\bar{X}_{i}\right) \right] ^{2}\nonumber \\&= \frac{1}{\mu ^{3}}E\left[ \frac{1}{\sum _{i=1}^{k}\frac{n_{i}-1}{S_{i}}} \left( \sum _{i=1}^{k}\frac{n_{i}-1}{S_{i}}(\bar{X}_{i}-\mu ) -\sum _{i=1}^{k}\frac{c_{i}(n_{i}-1)}{n_{i}+4a_{i}S_{i}}\text { exp }\{-a_{i}/\bar{X}_{i}\}\bar{X}_{i}\right) \right] ^{2}\nonumber \\&= \frac{1}{\mu ^{3}}E\left[ \frac{1}{\sum _{i=1}^{k}\frac{n_{i}-1}{S_{i}}}\sum _{i=1}^{k}\frac{n_{i}-1}{S_{i}}(\bar{X}_{i}-\mu )\right] ^{2}\nonumber \\&-\frac{2}{\mu ^{3}}E\left[ \frac{1}{(\sum _{i=1}^{k}\frac{n_{i}-1}{S_{i}})^{2}}\sum _{i=1}^{k}\frac{n_{i}-1}{S_{i}}(\bar{X}_{i}-\mu )\sum _{i=1}^{k}\frac{c_{i}(n_{i}-1)}{n_{i}+4a_{i}S_{i}}\text { exp }\{-a_{i}/\bar{X}_{i}\}\bar{X}_{i}\right] \nonumber \\&+\frac{1}{\mu ^{3}}E\left[ \frac{1}{\sum _{i=1}^{k}\frac{n_{i}-1}{S_{i}}} \sum _{i=1}^{k}\frac{c_{i}(n_{i}-1)}{n_{i}+4a_{i}S_{i}}\text { exp }\{-a_{i}/\bar{X}_{i}\}\bar{X}_{i}\right] ^{2}\nonumber \\&= R_{3}(\tilde{\mu }_\text {GD},\mu )-2I_{1}+I_{2}. \end{aligned}$$
(8.10)

Then it is only required to prove \(I_{2}-2I_{1}\le 0\) if we want to get the dominance result of \(\tilde{\mu }_\text {S}\).

As \(\bar{X}_{i}'s\) are mutually independent and \(E(\bar{X}_{i})=\mu \), using Lemma 2 we get

$$\begin{aligned} I_{1}&= \frac{1}{\mu ^{3}}E\left[ \frac{1}{(\sum _{j=1}^{k}\frac{n_{j}-1}{S_{j}})^{2}} \sum _{i=1}^{k}\frac{c_{i}(n_{i}-1)^{2}}{(n_{i}+4a_{i}S_{i})S_{i}} \text { exp }\{-a_{i}/\bar{X}_{i}\}(\bar{X}_{i}-\mu )\bar{X}_{i}\right] \nonumber \\&= \frac{1}{\mu ^{3}}E\left[ E\left( \sum _{i=1}^{k}\frac{c_{i}(n_{i}-1)^{2}\text { exp }\{-a_{i}/\bar{X}_{i}\}(\bar{X}_{i}-\mu )\bar{X}_{i}}{(n_{i}+4a_{i}S_{i})S_{i}(\sum _{j=1}^{k}\frac{n_{j}-1}{S_{j}})^{2}} | S_{i} \right) \right] \nonumber \\&= \frac{1}{\mu ^{3}}E\left( \frac{1}{(\sum _{j=1}^{k}\frac{n_{j}-1}{S_{j}})^{2}} \sum _{i=1}^{k}\frac{c_{i}(n_{i}-1)^{2}\mu ^{2}}{(n_{i}+4a_{i}S_{i})S_{i}} \left( \frac{\mu }{n_{i}\lambda _{i}}+\frac{\sqrt{n_{i}\lambda _{i}+2a_{i}}}{\sqrt{n_{i}\lambda _{i}}}\right) \right. \nonumber \\&\qquad \qquad \,\,\times \left. \text { exp }\left\{ \frac{n_{i}\lambda _{i}-\sqrt{n_{i}\lambda _{i}(n_{i}\lambda _{i}+2a_{i})}}{\mu }\right\} \right) \nonumber \\&-\frac{1}{\mu ^{3}}E\left( \frac{1}{\left( \sum _{j=1}^{k}\frac{n_{j}-1}{S_{j}}\right) ^{2}} \sum _{i=1}^{k}\frac{c_{i}(n_{i}-1)^{2}\mu ^{2}}{(n_{i}+4a_{i}S_{i})S_{i}} \text { exp }\left\{ \frac{n_{i}\lambda _{i}-\sqrt{n_{i}\lambda _{i}(n_{i}\lambda _{i}+2a_{i})}}{\mu }\right\} \right) \!.\nonumber \\ \end{aligned}$$
(8.11)

By Cauchy inequality and Lemma 2, we have

$$\begin{aligned} I_{2}&\le \frac{k}{\mu ^{3}}E\left[ \left( \frac{1}{\sum _{j=1}^{k}\frac{n_{j}-1}{S_{j}}}\right) ^{2} \sum _{i=1}^{k}\frac{c_{i}^{2}(n_{i}-1)^{2}}{(n_{i}+4a_{i}S_{i})^{2}}\text { exp }\{-2a_{i}/\bar{X}_{i}\}\bar{X}_{i}^{2}\right] \nonumber \\&= \frac{k}{\mu ^{3}}E\left[ E\left( \sum _{i=1}^{k}\frac{c_{i}^{2}(n_{i}-1)^{2}\text { exp }\{-2a_{i}/\bar{X}_{i}\}\bar{X}_{i}^{2}}{(n_{i}+4a_{i}S_{i})^{2}(\sum _{j=1}^{k}\frac{n_{j}-1}{S_{j}})^2}\mid S_{i} \right) \right] \nonumber \\&= \frac{k}{\mu ^{3}}E\left[ \left( \frac{1}{\sum _{j=1}^{k}\frac{n_{j}-1}{S_{j}}}\right) ^{2} \sum _{i=1}^{k}\frac{c_{i}^{2}(n_{i}-1)^{2}}{(n_{i}+4a_{i}S_{i})^{2}}\mu ^{2} \left( \frac{\mu }{n_{i}\lambda _{i}}+\frac{\sqrt{n_{i}\lambda _{i}+4a_{i}}}{\sqrt{n_{i}\lambda _{i}}}\right) \right. \nonumber \\&\qquad \qquad \times \,\,\left. \text { exp }\left\{ \frac{n_{i}\lambda _{i}-\sqrt{n_{i}\lambda _{i}(n_{i}\lambda _{i}+4a_{i})}}{\mu }\right\} \right] \!. \end{aligned}$$
(8.12)

So we get \(I_{2}-2I_{1}\le \frac{1}{\mu ^{3}}E\left[ \left( \frac{\mu }{\sum _{j=1}^{k}\frac{n_{j}-1}{S_{j}}}\right) ^{2}\right. \)

$$\begin{aligned}&\sum _{i=1}^{k}\left( \frac{kc_{i}^{2}(n_{i}-1)^{2}}{(n_{i}+4a_{i}S_{i})^{2}} \frac{\sqrt{n_{i}\lambda _{i}+4a_{i}}}{\sqrt{n_{i}\lambda _{i}}} \text { exp }\left\{ \frac{n_{i}\lambda _{i}-\sqrt{n_{i}\lambda _{i}(n_{i}\lambda _{i}+4a_{i})}}{\mu }\right\} \right. \nonumber \\&\quad \left. -\frac{2c_{i}(n_{i}-1)^{2}}{(n_{i}+4a_{i}S_{i})S_{i}} \frac{\sqrt{n_{i}\lambda _{i}+2a_{i}}-\sqrt{n_{i}\lambda _{i}}}{\sqrt{n_{i}\lambda _{i}}} \text { exp }\left\{ \frac{n_{i}\lambda _{i}-\sqrt{n_{i}\lambda _{i}(n_{i}\lambda _{i}+2a_{i})}}{\mu }\right\} \right) \nonumber \\&\quad +\sum _{i=1}^{k}\left( \frac{kc_{i}^{2}(n_{i}-1)^{2}}{(n_{i}+4a_{i}S_{i})^{2}}\frac{\mu }{n_{i}\lambda _{i}} \text { exp }\left\{ \frac{n_{i}\lambda _{i}-\sqrt{n_{i}\lambda _{i}(n_{i}\lambda _{i}+4a_{i})}}{\mu }\right\} \right. \nonumber \\&\quad \left. \left. -\frac{2c_{i}(n_{i}-1)^{2}}{(n_{i}+4a_{i}S_{i})S_{i}}\frac{\mu }{n_{i}\lambda _{i}} \text { exp }\left\{ \frac{n_{i}\lambda _{i}-\sqrt{n_{i}\lambda _{i}(n_{i}\lambda _{i}+2a_{i})}}{\mu }\right\} \right) \right] \!. \end{aligned}$$
(8.13)

Note that \(\text { exp }\left\{ \frac{n_{i}\lambda _{i}-\sqrt{n_{i}\lambda _{i}(n_{i}\lambda _{i}+4a_{i})}}{\mu }\right\} <\text { exp }\left\{ \frac{n_{i}\lambda _{i}-\sqrt{n_{i}\lambda _{i}(n_{i}\lambda _{i}+2a_{i})}}{\mu }\right\} \). Then the following two inequalities is a sufficient condition for \(I_{2}-2I_{1}\le 0\)

$$\begin{aligned}&E\left[ \left( \frac{\mu }{\sum _{j=1}^{k}\frac{n_{j}-1}{S_{j}}}\right) ^{2}\left( \frac{kc_{i}^{2}(n_{i}-1)^{2}}{(n_{i}+4a_{i}S_{i})^{2}} \frac{\sqrt{n_{i}\lambda _{i}+4a_{i}}}{\sqrt{n_{i}\lambda _{i}}}\right. \right. \nonumber \\&\qquad \quad \left. \left. -\frac{2c_{i}(n_{i}-1)^{2}}{(n_{i}+4a_{i}S_{i})S_{i}}\frac{\sqrt{n_{i}\lambda _{i}+2a_{i}}-\sqrt{n_{i}\lambda _{i}}}{\sqrt{n_{i}\lambda _{i}}}\right) \right] \le 0, \end{aligned}$$
(8.14)
$$\begin{aligned}&E\left[ \left( \frac{\mu }{\sum _{j=1}^{k}\frac{n_{j}-1}{S_{j}}}\right) ^{2}\left( \frac{kc_{i}^{2}(n_{i}-1)^{2}}{(n_{i}+4a_{i}S_{i})^{2}}- \frac{2c_{i}(n_{i}-1)^{2}}{(n_{i}+4a_{i}S_{i})S_{i}}\right) \right] \le 0,\quad \quad \end{aligned}$$
(8.15)

\( i=1,\ldots ,k.\)

Note that (8.14) is a sufficient condition for (8.15) and the fact that \(\sqrt{n_{i}\lambda _{i}+2a_{i}}-\sqrt{n_{i}\lambda _{i}}>\frac{a_{i}}{\sqrt{n_{i}\lambda _{i}+4a_{i}}}\). So, a sufficient condition for \(I_{2}-2I_{1}\le 0\) is given for \(i=1,\ldots ,k\) by

$$\begin{aligned} E\left[ \left( \frac{\mu }{\sum _{j=1}^{k}\frac{n_{j}-1}{S_{j}}}\right) ^{\!2}\!\left( \frac{kc_{i}^{2}(n_{i}-1)^{2}}{(n_{i}+4a_{i}S_{i})^{2}} \frac{n_{i}\lambda _{i}+4a_{i}}{a_{i}} -\frac{2c_{i}(n_{i}-1)^{2}}{(n_{i}+4a_{i}S_{i})S_{i}}\right) \right] \!\le \! 0.\quad \quad \quad \end{aligned}$$
(8.16)

After some manipulation, for each \(i=1,\ldots ,k\), (8.16) is equivalent to

$$\begin{aligned} E\left[ \left( \frac{\mu }{S_{i}\sum _{j=1}^{k}\frac{n_{j}-1}{S_{j}}}\right) ^{2}\frac{c_{i}(n_{i}-1)^{2}}{(n_{i}+4a_{i}S_{i})} \left( \frac{kc_{i}(n_{i}\lambda _{i}+4a_{i})S_{i}^{2}}{a_{i}(n_{i}+4a_{i}S_{i})} -2S_{i}\right) \right] \le 0.\quad \quad \quad \quad \end{aligned}$$
(8.17)

As \({\small \left( \frac{\mu }{S_{i}\sum _{j=1}^{k}\frac{n_{j}-1}{S_{j}}}\right) ^{2}\frac{c_{i}(n_{i}-1)^{2}}{(n_{i}+4a_{i}S_{i})^{2}}}\) is a continuous nonnegative decreasing function of \(S_{i}\), using Lemma 1 we get for \(kc_{i}\le 2a_{i}, i=1,\ldots ,k,\)

$$\begin{aligned}&E\left[ \left( \frac{\mu }{S_{i}\sum _{j=1}^{k}\frac{n_{j}-1}{S_{j}}}\right) ^{2}\frac{c_{i}(n_{i}-1)^{2}}{(n_{i}+4a_{i}S_{i})} \left( \frac{kc_{i}(n_{i}\lambda _{i}+4a_{i})S_{i}^{2}}{a_{i}(n_{i}+4a_{i}S_{i})} -2S_{i}\right) \right] \nonumber \\&\qquad \le E\left[ \left( \frac{\mu }{S_{i}\sum _{j=1}^{k}\frac{n_{j}-1}{S_{j}}}\right) ^{2}\frac{c_{i}n_{i}(n_{i}-1)^{2}}{(n_{i}+4a_{i}S_{i})^{2}} \left( \frac{kc_{i}\lambda _{i}}{a_{i}}S_{i}^{2}-2S_{i}\right) \right] \nonumber \\&\qquad \le \left( \frac{\mu }{n_{i}-1+\sum _{j\ne i}\frac{a_{i}(n_{j}-1)}{c_{i}\lambda _{i}S_{j}}}\right) ^{2}\frac{c_{i}n_{i}(n_{i}-1)^{2}}{(n_{i}+8a_{i}^{2}/kc_{i}\lambda _{i})^{2}} \left( \frac{kc_{i}(n_{i}^{2}-1)}{a_{i}n_{i}^{2}\lambda _{i}}-\frac{2(n_{i}-1)}{n_{i}\lambda _{i}}\right) \!.\nonumber \\ \end{aligned}$$
(8.18)

Then, from (8.18) we get a sufficient condition for (8.17)

$$\begin{aligned} 0\le c_{i}\le \frac{2a_{i}n_{i}}{k(n_{i}+1)},\quad for\quad i=1,\ldots ,k. \end{aligned}$$
(8.19)

This completes the proof.

Appendix B: Derivation of (3.5)

The derivation of (3.5) is as follows:

$$\begin{aligned} \tilde{\mu }_{B}(\bar{X})&=\frac{\int _{0}^{\infty }\mu ^{-2}\text { exp }\{-n\lambda (\bar{X}-\mu )^{2}/(2\mu ^{2}\bar{X})\}d\mu }{\int _{0}^{\infty }\mu ^{-3}\text { exp }\{-n\lambda (\bar{X}-\mu )^{2}/(2\mu ^{2}\bar{X})\}d\mu } \nonumber \\&\overset{\theta =1/\mu }{=}\frac{\int _{0}^{\infty }\text { exp }\{-n\lambda \bar{X}(\theta -1/\bar{X})^{2}/2\}d\theta }{\int _{0}^{\infty }\theta \text { exp }\{-n\lambda \bar{X}(\theta -1/\bar{X})^{2}/2\}d\theta } \nonumber \\&\overset{y=\sqrt{n\lambda \bar{X}}(\theta -1/\bar{X})}{=}\frac{\int _{-\sqrt{n\lambda /\bar{X}}}^{\infty }\text { exp }\{-y^{2}/2\}dy}{\int _{-\sqrt{n\lambda /\bar{X}}}^{\infty }(y/\sqrt{n\lambda \bar{X}}+1/\bar{X}) \text { exp }\{-y^{2}/2\}dy} \nonumber \\&=\frac{\varPhi (\sqrt{n\lambda /\bar{X}})}{\int _{-\sqrt{n\lambda /\bar{X}}}^{\infty }\frac{y/\sqrt{n\lambda \bar{X}}+1/\bar{X}}{\sqrt{2\pi }} \text { exp }\{-y^{2}/2\}dy} \nonumber \\&=\frac{\varPhi (\sqrt{n\lambda /\bar{X}})}{\varPhi (\sqrt{n\lambda /\bar{X}})/\bar{X}+\text { exp }\{-n\lambda /2\bar{X}\}/\sqrt{2\pi n\lambda \bar{X}}} \nonumber \\&=\bar{X}\frac{\varPhi (\sqrt{n\lambda /\bar{X}})}{\varPhi (\sqrt{n\lambda /\bar{X}})+\sqrt{\bar{X}}\text { exp }\{-n\lambda /2\bar{X}\}/\sqrt{2\pi n\lambda }} \nonumber \\&=\bar{X}\frac{\sqrt{n\lambda /\bar{X}}\sqrt{2\pi }\varPhi (\sqrt{n\lambda /\bar{X}})}{\sqrt{n\lambda /\bar{X}}\sqrt{2\pi }\varPhi (\sqrt{n\lambda /\bar{X}})+\text { exp }\{-n\lambda /2\bar{X}\}} \nonumber \\&=\bar{X}\left[ 1-\frac{\sqrt{\bar{X}}/\sqrt{2\pi n\lambda }}{\varPhi (\sqrt{n\lambda /\bar{X}})+\sqrt{\bar{X}}\text { exp }\{-n\lambda /2\bar{X}\}/\sqrt{2\pi n\lambda }}\text { exp }\{-n\lambda /2\bar{X}\}\right] \nonumber \\&=\bar{X}\left[ 1-\frac{1}{\sqrt{n\lambda /\bar{X}}\sqrt{2\pi }\varPhi (\sqrt{n\lambda /\bar{X}})+\text { exp }\{-n\lambda /2\bar{X}\}}\text { exp }\{-n\lambda /2\bar{X}\}\right] \!. \nonumber \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, T., Liu, S. & Ahmed, S.E. Shrinkage estimation for the mean of the inverse Gaussian population. Metrika 77, 733–752 (2014). https://doi.org/10.1007/s00184-013-0462-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00184-013-0462-8

Keywords

Navigation