Skip to main content
Log in

Exact \(D\)-optimal designs for first-order trigonometric regression models on a partial circle

  • Published:
Metrika Aims and scope Submit manuscript

Abstract

Recently, various approximate design problems for low-degree trigonometric regression models on a partial circle have been solved. In this paper we consider approximate and exact optimal design problems for first-order trigonometric regression models without intercept on a partial circle. We investigate the intricate geometry of the non-convex exact trigonometric moment set and provide characterizations of its boundary. Building on these results we obtain a solution of the exact \(D\)-optimal design problem. It is shown that the structure of the optimal designs depends on both the length of the design interval and the number of observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Chang F-C, Yeh Y-R (1998) Exact \(A\)-optimal designs for quadratic regression. Statist Sinica 8:527–533

    MathSciNet  MATH  Google Scholar 

  • Constantine KB, Lim YB, Studden WJ (1987) Admissible and optimal exact designs for polynomial regression. J Stat Plan Inference 16:15–32

    Article  MathSciNet  MATH  Google Scholar 

  • Dette H, Melas VB (2002) \(E\)-optimal designs in Fourier regression models on a partial circle. Math Methods Stat 11:259–296

    MathSciNet  Google Scholar 

  • Dette H, Melas VB (2003) Optimal designs for estimating individual coefficients in Fourier regression models. Ann Stat 31:1669–1692

    Article  MathSciNet  MATH  Google Scholar 

  • Dette H, Melas VB, Biedermann S (2002a) A functional-algebraic determination of \(D\)-optimal designs for trigonometric regression models on a partial circle. Stat Probab Lett 58:389–397

    Article  MathSciNet  MATH  Google Scholar 

  • Dette H, Melas VB, Pepelyshev A (2002b) \(D\)-optimal designs for trigonometric regression models on a partial circle. Ann Inst Stat Math 54:945–959

    Article  MathSciNet  MATH  Google Scholar 

  • Dette H, Melas VB, Shpilev P (2007) Optimal designs for estimating the coefficients of the lower frequencies in trigonometric regression models. Ann Inst Stat Math 59:655–673

    Article  MathSciNet  MATH  Google Scholar 

  • Dette H, Melas VB, Shpilev P (2009) Optimal designs for estimating pairs of coefficients in Fourier regression models. Stat Sinica 19:1587–1601

    MathSciNet  MATH  Google Scholar 

  • Dette H, Melas VB, Shpilev P (2011) Optimal designs for trigonometric regression models. J Stat Plan Inference 141:1343–1353

    Article  MathSciNet  MATH  Google Scholar 

  • Fedorov VV (1972) Theory of optimal experiments. In: Studden WJ, Klimko EM (eds) Translated from the Russian. Academic Press, New York

    Google Scholar 

  • Fitzpatrick PM (2006) Advanced calculus, 2nd edn. Thomson, New York

    Google Scholar 

  • Gaffke N (1987) On \(D\)-optimality of exact linear regression designs with minimum support. J Stat Plan Inference 15:189–204

    Article  MathSciNet  MATH  Google Scholar 

  • Hoel PG (1965) Minimax designs in two dimensional regression. Ann Math Stat 36:1097–1106

    Article  MathSciNet  MATH  Google Scholar 

  • Imhof LA (1998) \(A\)-optimum exact designs for quadratic regression. J Math Anal Appl 228:157–165

    Article  MathSciNet  MATH  Google Scholar 

  • Kiefer JC, Wolfowitz J (1960) The equivalence of two extremum problems. Can J Math 12:363–366

    Article  MathSciNet  MATH  Google Scholar 

  • Kitsos CP, Titterington DM, Torsney B (1988) An optimal design problem in rhythmometry. Biometrics 44:657–671

    Article  MathSciNet  MATH  Google Scholar 

  • Lau TS, Studden WJ (1985) Optimal designs for trigonometric and polynomial regression using canonical moments. Ann Stat 13:383–394

    Article  MathSciNet  MATH  Google Scholar 

  • Marshall AW, Olkin I, Arnold BC (2011) Inequalities: theory of majorization and its applications, 2nd edn. Springer, New York

    Book  MATH  Google Scholar 

  • Pukelsheim F (2006) Optimal design of experiments. Society for Industrial and Applied Mathematics, Philadelphia

    Book  MATH  Google Scholar 

  • Wu H (1997) Optimal exact designs on a circle or a circular arc. Ann Stat 25:2027–2043

    Article  MATH  Google Scholar 

  • Wu H (2002) Optimal designs for first-order trigonometric regression on a partial cycle. Stat Sinica 12:917–930

    Google Scholar 

Download references

Acknowledgments

We thank the referees and the editor for several comments that have helped to improve the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fu-Chuen Chang.

Appendix

Appendix

Proof of Theorem 4.1 (a)

Part (a) of Theorem 4.1 is an immediate consequence of Theorem 2.1, since the approximate optimal designs are already exact \(n\)-point designs when \(n\) is even. \(\square \)

The following elementary lemma highlights a conclusion that can be drawn for three integers when their sum is odd and which may be false when the sum is even. It is needed several times in the proof of Theorem 4.1 (b).

Lemma 5.1

Suppose that \(j_1, j_2, j_3\) are integers and \(j_1+j_2+j_3\) is odd. If \(j_2> |j_1-j_3|-1\), then \(j_2\ge |j_1-j_3|+1\).

Proof

Suppose that \(j_2\) is even. Then \(j_1+j_3\) is odd, and so is \(j_1-j_3\). Therefore \(j_2\ne |j_1-j_3|\), and the assertion follows. The argument is similar when \(j_2\) is odd. \(\square \)

Proof of Theorem 4.1 (b)

Let \(n=2k+1\).

  1. (i)

    Let \(0<a<\frac{1}{4}\pi \). Let \(\xi _n\) be any \(D\)-optimal exact \(n\)-observation design, and let

    $$\begin{aligned} \xi _n^{*}:= \begin{Bmatrix}-a&a \\ k/n&(k+1)/n\end{Bmatrix} , \qquad \xi _n^{**}:= \begin{Bmatrix}-a&a \\ (k+1)/n&k/n\end{Bmatrix}. \end{aligned}$$

    Recall from Sect. 3 that \(\mathbf{c}(\xi _n)\) is the moment point closest to the origin. Thus

    $$\begin{aligned} c_1^2(\xi _n)+c_2^2(\xi _n)\!=\! \Vert \mathbf{c}(\xi _n)\Vert ^2 \le \Vert \mathbf{c}(\xi _n^{*})\Vert ^2 =\Vert \mathbf{c}(\xi _n^{**})\Vert ^2 \!=\!\cos ^2(2a)+\frac{1}{n^2}\sin ^2(2a).\nonumber \\ \end{aligned}$$
    (5.1)

    Since \(c_1(\xi _n)\ge \cos (2a)>0\), it follows that

    $$\begin{aligned} |c_2(\xi _n)|\le \frac{1}{n}\sin (2a). \end{aligned}$$
    (5.2)

    Therefore, the function \(h\) defined by (3.3) and (3.2) satisfies

    $$\begin{aligned} h(c_2(\xi _n))=\frac{n-1}{n}\cos (2a)+\frac{1}{n} \sqrt{1-n^2c_2^2(\xi _n)}. \end{aligned}$$

    Hence, by Lemma 3.1,

    $$\begin{aligned} \Vert \mathbf{c}(\xi _n)\Vert ^2\ge h^2(c_2(\xi _n))+c_2^2(\xi _n) =\frac{1}{n^2}\psi (n^2c_2^2(\xi _n)), \end{aligned}$$
    (5.3)

    where

    $$\begin{aligned} \psi (u):=\left\{ (n-1)\cos (2a)+\sqrt{1-u} \right\} ^2+u, \quad 0\le u<1. \end{aligned}$$

    But

    $$\begin{aligned} \psi ^{\prime }(u)=-\frac{(n-1)\cos (2a)}{\sqrt{1-u}}<0, \quad 0\le u<1, \end{aligned}$$

    so that \(\psi \) is strictly decreasing. Hence, by (5.2),

    $$\begin{aligned} \frac{1}{n^2}\psi (n^2c_2^2(\xi _n))\ge \frac{1}{n^2}\psi (\sin ^2(2a)) =\cos ^2(2a)+\frac{1}{n^2}\sin ^2(2a). \end{aligned}$$
    (5.4)

    Combining (5.1), (5.3) and (5.4), one obtains that none of the inequalities there can be strict. Equality in (5.3) implies that \(c_1(\xi _n)=h(c_2(\xi _n))\), and equality in (5.4) implies that \(|c_2(\xi _n)|=\frac{1}{n}\sin (2a)\). Thus, \(c_1(\xi _n)=\cos (2a)\), and it follows that all the design points of \(\xi _n\) belong to \(\{-a, a\}\). The equation \(|c_2(\xi _n)|=\frac{1}{n}\sin (2a)\) now yields that \(\xi _n=\xi _n^*\) or \(\xi _n=\xi _n^{**}\).

  2. (ii)

    If \(a=\frac{1}{4}\pi \), the same arguments as in (i) show that \(\xi _n^*\) and \(\xi _n^{**}\) are \(D\)-optimal. However, in this case, the function \(\psi \) is not strictly decreasing but constant, so that there may be more optimal designs. That all designs in the class given in Theorem 4.1 (b) (ii) are as good as \(\xi _n^*\) is easily verified. That there are no other \(D\)-optimal designs can be shown using Lemma 3.1 (a). We omit the details.

  3. (iii)

    Let \(\frac{1}{4}\pi <a<a_n^*\). It will first be shown that the moment set \(\mathcal{C}_n\) does not contain the point \(\mathbf{0}\). In view of (3.1), this implies that the moment vector of the optimal design is a boundary point of \(\mathcal{C}_n\). Let

    $$\begin{aligned} \gamma :=\min \left\{ c_1(\xi _n) :\ c_2(\xi _n)=0\right\} \!, \end{aligned}$$

    and suppose the minimum is attained at the design \(\zeta _n\) with \(c_2(\zeta _n)=0\). We will show that \(\gamma >0\). Obviously, \(\mathbf{c}(\zeta _n)\) cannot be an interior point of \(\mathcal{C}_n\), and so, by Lemma 3.2, \(\zeta _n\) is of the form

    $$\begin{aligned} \zeta _n=\begin{Bmatrix}-a&\eta&a\\ j_1/n&j_2/n&j_3/n\end{Bmatrix}. \end{aligned}$$

    Note that \(\zeta _n\) cannot be of the form (3.6) since \(c_2(\zeta _n)=0\). We have

    $$\begin{aligned} \gamma&=c_1(\zeta _n)=\frac{j_1+j_3}{n}\cos (2a)+\frac{j_2}{n}\cos (2\eta ), \end{aligned}$$
    (5.5)
    $$\begin{aligned} 0&=c_2(\zeta _n)=\frac{-j_1+j_3}{n}\sin (2a)+\frac{j_2}{n}\sin (2\eta ). \end{aligned}$$
    (5.6)

    Reflecting \(\zeta _n\) at the origin if necessary, we may assume that \(j_1\ge j_3\). It follows from (5.6) that \(0\le (-j_1+j_3)\sin (2a)+j_2\). Also, since \(\frac{1}{4}\pi <a\le a_n^*\), \(\sin (2a)>1-\cos ^2(2a)\ge 1-1/(4k^2)\). Consequently,

    $$\begin{aligned} j_2\!\ge \! (j_1-j_3)\sin (2a)\!\ge \! (j_1-j_3)\left(1-\frac{1}{4k^2} \right) \!\ge \! j_1-j_3-\frac{2k+1}{4k^2}> j_1-j_3-1. \end{aligned}$$

    Hence, by Lemma 5.1,

    $$\begin{aligned} j_2\ge j_1-j_3+1. \end{aligned}$$
    (5.7)

    As \(j_1\ge j_3\), it now follows from (5.6) that \(\eta \ge 0\). If \(\eta \in [\frac{1}{4}\pi ,a)\), then \(\sin (2\eta )\ge \sin (2a)\), so that, by (5.6), \(0\ge (-j_1+j_3+j_2)\sin (2a)\), contradicting (5.7). Thus \(\eta \in [0,\frac{1}{4}\pi )\), and so \(\cos (2\eta )>0\). Therefore, by (5.5) and (5.6),

    $$\begin{aligned} n\gamma \!&= \! (j_1+j_3)\cos (2a)+j_2\sqrt{1-\sin ^2(2\eta )}\\ \quad&= (j_1+j_3)\cos (2a)+\sqrt{j_2^2-(j_1-j_3)^2\sin ^2(2a)}. \end{aligned}$$

    This expression is positive if and only if

    $$\begin{aligned} j_2^2>(j_1-j_3)^2+4j_1j_3\cos ^2(2a). \end{aligned}$$

    But this inequality follows from (5.7) and the fact that \(4j_1j_3\cos ^2(2a)< 4k^2\cos ^2(2a_n^*)=1\). Hence \(\gamma >0\). It is thus established that \(\mathbf{0}\not \in \mathcal{C}_n\). Now let \(\xi _n\) be \(D\)-optimal and

    $$\begin{aligned} \xi _n^*= \begin{Bmatrix}-a&0&a\\ k/n&1/n&k/n\end{Bmatrix}. \end{aligned}$$

    According to (3.1), \(\mathbf{c}(\xi _n)\) has minimum norm in \(\mathcal{C}_n\). In particular,

    $$\begin{aligned} \Vert \mathbf{c}(\xi _n)\Vert \le \Vert \mathbf{c}(\xi _n^*)\Vert = \frac{1+2k\cos (2a)}{n}<\frac{1}{n} \end{aligned}$$
    (5.8)

    and \(\mathbf{c}(\xi _n)\) must be a boundary point of \(\mathcal{C}_n\). Using (3.7) and (5.8), one may show that \(\xi _n\) cannot have the form (3.6). It therefore follows by Lemma 3.2 that \(\xi _n\) is of the form (3.5)

    $$\begin{aligned} \xi _n=\begin{Bmatrix}-a&\theta&a\\ k_1/n&k_2/n&k_3/n\end{Bmatrix}. \end{aligned}$$

    Observe that this implies that \(\mathbf{c}(\xi _n)\) lies on the circle with center

    $$\begin{aligned} \overline{\mathbf{c}}=\frac{1}{n} \begin{pmatrix}(k_1+k_3)\cos (2a)\\ (-k_1+k_3)\sin (2a)\end{pmatrix} \end{aligned}$$

    and radius \(k_2/n\). If \(k_2\le |k_1-k_3|-1\), then

    $$\begin{aligned} \Vert \mathbf{c}(\xi _n)\Vert&\ge \Vert \overline{\mathbf{c}}\Vert -\frac{k_2}{n} = \frac{1}{n}\sqrt{(k_1-k_3)^2+4k_1k_3\cos ^2(2a)}-\frac{k_2}{n}\\&\ge \frac{1}{n}|k_1-k_3| -\frac{1}{n}(|k_1-k_3|-1) = \frac{1}{n}. \end{aligned}$$

    This contradicts (5.8). Thus \(k_2>|k_1-k_3|-1\), and so, by Lemma 5.1, \(k_2\ge |k_1-k_3|+1\). In particular, since \(k_2\ge 1\), \(k_1k_3=k_1(2k+1-k_1-k_2)\le k^2\), and \(k_1k_3=k^2\) if and only if \(k_1=k_3=k\) and \(k_2=1\). It follows that

    $$\begin{aligned} \Vert \mathbf{c}(\xi _n)\Vert&\ge \frac{k_2}{n}-\Vert \overline{\mathbf{c}}\Vert = \frac{k_2}{n}-\frac{1}{n}\sqrt{(k_1-k_3)^2+4k_1k_3\cos ^2(2a)}\end{aligned}$$
    (5.9)
    $$\begin{aligned}&\ge \frac{|k_1-k_3|+1}{n}-\frac{1}{n}\sqrt{(k_1-k_3)^2+(2k\cos (2a))^2} =:A. \end{aligned}$$
    (5.10)

    If \(\beta <0\), then \(\sqrt{\alpha ^2+\beta ^2}\le |\alpha |-\beta \) with equality if and only if \(\alpha =0\). Using this inequality and (5.8), one obtains that

    $$\begin{aligned} A\ge \frac{|k_1-k_3|+1}{n} -\frac{1}{n} \left\{ |k_1-k_3|-2k\cos (2a)\right\} =\frac{1+2k\cos (2a)}{n} \ge \Vert \mathbf{c}(\xi _n)\Vert .\nonumber \\ \end{aligned}$$
    (5.11)

    Consequently, all inequalities in (5.9), (5.10) and (5.11) must be equalities, so that \(k_1=k_3=k\) and \(k_2=1\). Moreover, in view of (5.9), \(\Vert \overline{\mathbf{c}}\Vert + \Vert \mathbf{c}(\xi _n)\Vert =k_2/n=\Vert \overline{\mathbf{c}}-\mathbf{c}(\xi _n)\Vert \), which implies that \(\overline{\mathbf{c}}\) and \(\mathbf{c}(\xi _n)\) are proportional. Thus \(\theta =0\).

  4. (iv)

    If \(a_n^*\le a \le \pi \) and

    $$\begin{aligned} \xi _n = \begin{Bmatrix}-a_n^*+\theta&\theta&a_n^*+\theta \\ k/n&1/n&k/n\end{Bmatrix} \end{aligned}$$

    for some \(\theta \in [-a+a_n^*, a-a_n^*]\), then \(\Vert \mathbf{c}(\xi _n)\Vert =0\), so that, by (3.1), \(\xi _n\) is \(D\)-optimal. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, FC., Imhof, L. & Sun, YY. Exact \(D\)-optimal designs for first-order trigonometric regression models on a partial circle. Metrika 76, 857–872 (2013). https://doi.org/10.1007/s00184-012-0420-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00184-012-0420-x

Keywords

Navigation