Skip to main content
Log in

Nonparametric checks for varying coefficient models with missing response at random

  • Published:
Metrika Aims and scope Submit manuscript

Abstract

In this paper, we propose a test on the parametric form of the coefficient functions in the varying coefficient model with missing response. Two groups of completed data sets are constructed by using imputation and inverse probability weighting methods respectively. By noting that the coefficient part can be a regression function for a specific model, we construct two empirical process-based tests. The asymptotical distributions of the proposed tests under null and local alternative hypothesis are investigated respectively. Simulation study is carried out to show the power performance of the test. We illustrate the proposed approaches with an environmental data set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Fan JQ, Zhang WY (1999) Statistical estimation in varying coefficient models. Ann Stat 27:1491–1518

    Article  MathSciNet  MATH  Google Scholar 

  • Fan JQ, Zhang WY (2000) Simultaneous confidence bands and hypothesis testing in varying-coefficient models. Scand J Stat 27:715–731

    Article  MathSciNet  MATH  Google Scholar 

  • Härdle W, Mammen E (1993) Comparing non-parametric versus parametric regression fits. Ann Stat 21:1926–1947

    Article  MATH  Google Scholar 

  • Hastie TJ, Tibshirani RJ (1993) Varying-coefficient models. J Roy Stat Soc B 55:757–796

    MathSciNet  MATH  Google Scholar 

  • Huang JZ, Wu CO, Zhou L (2002) Varying-coefficient models and basis function approximations for the analysis of repeated measurements. Biometrika 89:111–128

    Article  MathSciNet  MATH  Google Scholar 

  • Jennrich RI (1969) Asymptotic properties of non-least squares estimators. Ann Math Stat 40:633–643

    Article  MathSciNet  MATH  Google Scholar 

  • Little RJA, Rubin DB (1987) Statistical analysis with missing data. Wiley, New York

    MATH  Google Scholar 

  • Pollard D (1984) Convergence of stochastic processes. Springer, New York

    Book  MATH  Google Scholar 

  • Stute W, Zhu LX (2005) Nonparametric checks for single-index models. Ann Stat 33:1048–1083

    Article  MathSciNet  MATH  Google Scholar 

  • Sun ZH, Wang QH, Dai PJ (2009) Model checking for partially linear models with missing responses at random. J Multiv Anal 100:636–651

    Article  MathSciNet  MATH  Google Scholar 

  • Wang QH, Lindon O, Härdle W (2004) Semiparametric regression analysis with missing response at random. J Am Stat Assoc 99:334–345

    Article  MATH  Google Scholar 

  • Wu CO, Chiang CT, Hoover DR (1998) Asymptotic confidence regions for kernel smoothing of a varying-coefficient model with longitudinal data. J Am Stat Assoc 93:1388–1402

    Article  MathSciNet  MATH  Google Scholar 

  • Xu WL, Guo X, Zhu LX (2012) Goodness-of-fitting for partial linear model with missing response at random. J Nonp Stat 24:103–118

    Article  MathSciNet  MATH  Google Scholar 

  • Xu WL, Zhu LX (2008) Goodness-of-fit testing for varying-coefficient models. Metrika 68:129–146

    Article  MathSciNet  Google Scholar 

  • Xu WL, Zhu LX (2009) A goodness-of-fit test for a varying-coefficients model in longitudinal studies. J Nonp Stat 21:427–440

    MathSciNet  MATH  Google Scholar 

  • Xu WL, Zhu LX (2012) Testing the adequacy of varying coefficient models with missing responses at random. Metrika (in press)

  • Zhu LX (2005) Nonparametric Monte Carlo tests and their applications. Springer, New York

    MATH  Google Scholar 

  • Zhu LX, Neuhaus G (2000) Nonparametric Monte Carlo tests for multivariate distributions. Biometrika 87:919–928

    Article  MathSciNet  MATH  Google Scholar 

  • Zhu LX, Ng KW (2003) Checking the adequacy of a partial linear model. Stat Sin 13:763–781

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We would like to thank the anonymous referees for comments that helped to substantially improve the paper. Besides, this research was supported by Program for New Century Excellent Talents in University (No. NCET-10-0803).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Guo.

Appendix

Appendix

The following conditions are required for proving the theorems.

  1. 1.

    The observation time points obey a random design in the sense that \(t_i (i=1, \ldots , n)\) are chosen independently from an unknown distribution \(F(\cdot )\) with a density \(f(\cdot )\) on the finit interval. The density function \(f(\cdot )\) of \(t\) is bounded away from zero and continuous on its support set (a,b) with \(-\infty <a<b<\infty \).

  2. 2.

    \(E |Y|^{4}<\infty \) and \(E |X|^{4}<\infty \).

  3. 3.

    The continuous kernel function \(K(\cdot )\) satisfies the following properties:

    1. a)

      the support of \(K( \cdot )\) is the interval \([-1, 1]\);

    2. b)

      \(K( \cdot )\) is symmetric about 0;

    3. c)

      \(\int _{-1}^1 K(u) du =1, \, \, \text{ and} \, \, \int _{-1}^1 |u|K(u)du\ne 0 \).

  4. 4.

    As \(n \rightarrow \infty ,\, \sqrt{n} h^2 \rightarrow 0\) and \( \sqrt{n} { h} \rightarrow \infty \).

  5. 5.

    \(E (\varepsilon ^2| X=x, T=t ) \le c_1\) for some \(c_1\) and all \(x\) and \(t\).

  6. 6.

    \(\beta _{r}(\cdot ,\theta _r)\) is continuously differentiable with respect to \(\theta _r\) in the interior set of \(\Theta _r\) for \(r=0,\ldots ,k\).

Remark 1

For the conditions imposed, we can see that Condition 1) is a typical condition for avoiding the boundary effect when nonparametric smoothing is applied. As to the design of observation time points, see also Huang et al. (2002) for such an assumption. Conditions 2) and 3) are also typical conditions: see Härdle and Mammen (1993). Condition 4) ensures the convergence of the test statistics. This condition means that undersmoothing is applied.

Proof of Theorem 1

Firstly, we prove the asymptotical properties of \(R_{n1}(t)\) and \(T_{n1}\). For \(R_{n1}(t)\), we have

$$\begin{aligned} R_{n1}(t)&= \frac{1}{\sqrt{n}}\sum _{i=1}^n (\hat{Z}_{i1} -Z_i)I(t_i\le t)-\frac{1}{\sqrt{n}}\sum _{i=1}^n (\beta (t_i,\hat{\theta })-\beta (t_i,\theta )) I(t_i\le t)\nonumber \\&+\frac{1}{\sqrt{n}}\sum _{i=1}^n (Z_i-\beta (t_i,\theta )) I(t_i\le t)\nonumber\\&=:I_{n1}-I_{n2}+I_{n3}. \end{aligned}$$
(A.1)

Below we deal with \(I_{n1}\) in (A.1). Noting that

$$\begin{aligned}&\max _{a \le t_i\le b}|\hat{S}^{-1}(t_i)-S^{-1}(t_i)|=O_p(1/\sqrt{nh}+h)\\&\max _{a \le t_i\le b}|\hat{\beta }(t_i)-\beta (t_i)|=O_p(1/\sqrt{nh}+h), \end{aligned}$$

for any subset \((a_1,b_1)\) with \(a<a_1<b_1<b\), see also Zhu and Ng (2003), we have

$$\begin{aligned} \hat{Z}_{i1}-Z_i&= \hat{S}^{-1}(t_i)x_i\hat{y}_{i1}-S^{-1}(t_i)x_i x^\tau _i\beta (t_i) \\&= \hat{S}^{-1}(t_i)x_i(\hat{y}_{i1}-x^\tau _i\hat{\beta }(t_i)) +\hat{S}^{-1}(t_i)x_ix^\tau _i(\hat{\beta }(t_i)-\beta (t_i))\\&+(\hat{S}^{-1}(t_i)-S^{-1}(t_i))x_ix^\tau _i\beta (t_i)\\&= \delta _i(\hat{S}^{-1}(t_i)-S^{-1}(t_i))x_i\epsilon _i+ (1-\delta _i)S^{-1}(t_i)x_ix^\tau _i(\hat{\beta }(t_i)-\beta (t_i))\\& +\delta _iS^{-1}(t_i)x_i\epsilon _i+(\hat{S}^{-1}(t_i)-S^{-1} (t_i))x_ix^\tau _i\beta (t_i)+O_p\left(\frac{1}{nh}+h^2\right). \end{aligned}$$
(A.2)

As a result, we have

$$\begin{aligned} I_{n1}&= \frac{1}{\sqrt{n}}\sum _{i=1}^n \delta _i(\hat{S}^{-1}(t_i)-S^{-1}(t_i)) x_i\epsilon _i I(t_i\le t)\\&+\frac{1}{\sqrt{n}}\sum _{i=1}^n (\hat{S}^{-1}(t_i)-S^{-1}(t_i))x_i x^\tau _i\beta (t_i)I(t_i\le t)+o_p(1)\\&+\frac{1}{\sqrt{n}}\sum _{i=1}^n (1-\delta _i)S^{-1}(t_i)x_ix^\tau _i(\hat{\beta } (t_i)-\beta (t_i))I(t_i\le t)\\&+\frac{1}{\sqrt{n}}\sum _{i=1}^n \delta _i S^{-1}(t_i)x_i\epsilon _i I(t_i\le t)\\& =I_{n1,1}+I_{n1,2}+I_{n1,3}+I_{n1,4}+o_p(1). \end{aligned}$$
(A.3)

We investigate the properties of \(I_{n1,1},\,I_{n1,2},\,I_{n1,3}\) and \(I_{n1,4}\) in (A.3). Denote \(s(t)=\int X X^\tau f_{X,t}(X,t)dX\) and \(\hat{s}(t_i)=n^{-1}\sum _{j=1}^n x_j x^\tau _jK_h(t_i-t_j)\), we can derive that

$$\begin{aligned} \hat{S}^{-1}(t_i)-S^{-1}(t_i)&= \hat{s}^{-1}(t_i)\hat{f}(t_i)-s^{-1}(t_i)f(t_i)\\&= s^{-1}(t_i)\hat{f}(t_i)-s^{-1}(t_i)\hat{s}(t_i)s^{-1}(t_i)f(t_i) +O_p\left(\frac{1}{nh}+h^2\right). \end{aligned}$$

Invoked by this fact, we have

$$\begin{aligned} I_{n1,1}&= \frac{1}{\sqrt{n}}\sum _{i=1}^n \delta _i\Big (s^{-1}(t_i)\hat{f}(t_i)-s^{-1}(t_i)\hat{s}(t_i)s^{-1}(t_i)f(t_i)\Big )x_i\epsilon _i I(t_i\le t)\\&= \frac{1}{\sqrt{n}}\sum _{i=1}^n\delta _is^{-1}(t_i)\frac{1}{n}\sum _{j=1}^nK_h(t_i-t_j)x_i\epsilon _i I(t_i\le t)\\&-\frac{1}{\sqrt{n}}\sum _{i=1}^n\delta _is^{-1}(t_i)\frac{1}{n} \sum _{j=1}^n x_j x^\tau _j K_h(t_i-t_j)s^{-1}(t_i)f(t_i)x_i \epsilon _i I(t_i\le t)+o_p(1)\\&= \frac{1}{\sqrt{n}}\sum _{j=1}^n s^{-1}(t_j)f(t_j)I(t_j\le t) E(\delta X\epsilon |T=t_j)\\&-\frac{1}{\sqrt{n}}\sum _{j=1}^n s^{-1}(t_j)f(t_j)x_j x^\tau _js^{-1} (t_j)f(t_j)I(t_j\le t) E(\delta X\epsilon |T=t_j)+o_p(1)\\& =o_p(1). \end{aligned}$$
(A.4)

The last equation in (A.4) follows because of the fact that \(E(\delta X\epsilon |T)= E(E(\delta X\epsilon |X,T)|T)=E(X\Delta (X,T)E(\epsilon |X,T)|T)=0\).

Similarly, for \(I_{n1,2}\), we can derive

$$\begin{aligned} I_{n1,2}&\!=\frac{1}{\sqrt{n}}\sum _{i=1}^n \Big (s^{-1}(t_i) \hat{f}(t_i)\!-\!s^{-1}(t_i)\hat{s}(t_i)s^{-1}(t_i)f(t_i)\Big ) x_ix^\tau _i\beta (t_i) I(t_i\le t)+o_p(1)\\&= \frac{1}{\sqrt{n}}\sum _{j=1}^n s^{-1}(t_j)f(t_j)E( XX^\tau |T=t_j) \beta (t_j)I(t_j\le t)+o_p(1)\\&-\frac{1}{\sqrt{n}}\sum _{j=1}^n s^{-1}(t_j)f(t_j)x_j x^\tau _j s^{-1}(t_j)f(t_j) E(XX^\tau |T=t_j)\beta (t_j)I(t_j\le t). \end{aligned}$$

Recall that \(S^{-1}(t_j)=s^{-1}(t_j)f(t_j),\,S(t_j)=E( XX^\tau |T=t_j)\) and \(Z_j=S^{-1}(t_j)x_j x^\tau _j \beta (t_j)\), we have

$$\begin{aligned} I_{n1,2}=\frac{1}{\sqrt{n}}\sum _{j=1}^n (\beta (t_j)-Z_j)I(t_j\le t)+o_p(1). \end{aligned}$$
(A.5)

We state the property of \(I_{n1,3}\) in (A.3) as follows. It can be easily derived that

$$\begin{aligned} \hat{\beta }(t_i)-\beta (t_i)&= -S^{-1}_1(t_i) (\hat{S}_1(t_i)-S_1(t_i))S^{-1}_1(t_i)G_1(t_i)\\&+S^{-1}_1(t_i)(\hat{G}_1(t_i)-G_1(t_i))+O_p\left(\frac{1}{nh}+h^2\right). \end{aligned}$$

Moreover, denote \(\hat{s}_1(t_i)=n^{-1}\sum _{j=1}^n \delta _j x_j x^\tau _jK_h(t_i-t_j)\) and \(\hat{g}_1(t_i)=n^{-1}\sum _{j=1}^n \delta _j x_j y_j K_h(t_i-t_j)\), we have

$$\begin{aligned}&\hat{S}_1(t_i)-S_1(t_i)=f^{-1}(t_i)\hat{s}_1(t_i)-f^{-2}(t_i)\hat{f}(t_i) s_1(t_i)+O_p\left(\frac{1}{nh}+h^2\right),\\&\hat{G}_1(t_i)-G_1(t_i)=f^{-1}(t_i)\hat{g}_1(t_i)-f^{-2}(t_i) \hat{f}(t_i)g_1(t_i)+O_p\left(\frac{1}{nh}+h^2\right). \end{aligned}$$

As a result,

$$\begin{aligned} \hat{\beta }(t_i)-\beta (t_i)&= -S^{-1}_1(t_i)\Big (f^{-1} (t_i)\hat{s}_1(t_i)-f^{-2}(t_i) \hat{f}(t_i)s_1(t_i)\Big )S^{-1}_1(t_i)G_1(t_i)\\&+\,S^{-1}_1(t_i)\Big (f^{-1}(t_i)\hat{g}_1(t_i)-f^{-2}(t_i)\hat{f}(t_i)g_1(t_i)\Big )+O_p\left(\frac{1}{nh}+h^2\right). \end{aligned}$$

For \(I_{n1,3}\) in (A.3), based on the above analysis, we have

$$\begin{aligned} I_{n1,3}&= -\frac{1}{\sqrt{n}}\sum _{i=1}^n (1-\delta _i)S^{-1}(t_i)x_ix^\tau _iS^{-1}_1(t_i)f^{-1}(t_i)\hat{s}_1(t_i)S^{-1}_1(t_i)G_1(t_i))I(t_i\le t)\\&+\frac{1}{\sqrt{n}}\sum _{i=1}^n (1-\delta _i)S^{-1}(t_i)x_ix^\tau _iS^{-1}_1(t_i)f^{-2}(t_i)\hat{f}(t_i)s_1(t_i)S^{-1}_1(t_i)G_1(t_i))I(t_i\le t) \\&+\frac{1}{\sqrt{n}}\sum _{i=1}^n (1-\delta _i)S^{-1}(t_i)x_ix^\tau _iS^{-1}_1(t_i)f^{-1}(t_i)\hat{g}_1(t_i))I(t_i\le t)\\&-\frac{1}{\sqrt{n}}\sum _{i=1}^n (1-\delta _i)S^{-1}(t_i)x_ix^\tau _i S^{-1}_1(t_i)f^{-2}(t_i)\hat{f}(t_i)g_1(t_i)I(t_i\le t)+o_p(1). \end{aligned}$$

Recall that \(\beta (t_i)=S^{-1}_1(t_i)G_1(t_i),S_1(t_i)=f^{-1}(t_i)s_1(t_i)\) and \(G_1(t_i)=f^{-1}(t_i)g_1(t_i)\), we obtain

$$\begin{aligned} I_{n1,3}&= \frac{1}{\sqrt{n}}\sum _{i=1}^n \Big \{(1-\delta _i)S^{-1}(t_i) x_i x^\tau _i S^{-1}_1(t_i)f^{-1}(t_i)I(t_i\le t) \\&\times \frac{1}{n}\sum _{j=1}^n \delta _j x_j\epsilon _j K_h(t_i-t_j)\Big \}+o_p(1)\\&= \frac{1}{\sqrt{n}}\sum _{j=1}^n S^{-1}(t_j)E \{(1-\delta )XX^\tau |T=t_j\}S^{-1}_1(t_j)I(t_j\le t) \delta _j x_j\epsilon _j+o_p(1)\\& =\frac{1}{\sqrt{n}}\sum _{j=1}^n \{S^{-1}_1(t_j) -S^{-1}(t_j)\}I(t_j\le t) \delta _j x_j\epsilon _j +o_p(1). \end{aligned}$$
(A.6)

According to (A.3)–(A.6), for \(I_{n1}\), we can have

$$\begin{aligned} I_{n1}&= \frac{1}{\sqrt{n}}\sum _{j=1}^n \{S^{-1}_1(t_j)-S^{-1}(t_j)\} I(t_j\le t) \delta _j x_j\epsilon _j +\frac{1}{\sqrt{n}}\sum _{j=1}^n (\beta (t_j)-Z_j)I(t_j\le t)\\&+\frac{1}{\sqrt{n}}\sum _{i=1}^n \delta _iS^{-1}(t_i)x_i\epsilon _i I(t_i\le t)+o_p(1)\\& =\frac{1}{\sqrt{n}}\sum _{j=1}^n S^{-1}_1(t_j)I(t_j\le t) \delta _j x_j\epsilon _j +\frac{1}{\sqrt{n}}\sum _{j=1}^n (\beta (t_j)-Z_j)I(t_j\le t)+o_p(1). \end{aligned}$$
(A.7)

For \(I_{n2}\), under mild conditions, see Jennrich (1969), we have

$$\begin{aligned} I_{n2}&= E(g(T,\theta )I(T\le t))E(g^\tau (T,\theta )g(T,\theta ))^{-1}\\&\times \frac{1}{\sqrt{n}}\sum _{j=1}^n g^\tau (t_j,\theta ) (\hat{Z}_{j1}-\beta (t_j,\theta ))+o_p(1)\\&= E(g(T,\theta )I(T\le t))E(g^\tau (T,\theta )g(T,\theta ))^{-1}\\&\times \left(\frac{1}{\sqrt{n}}\sum _{j=1}^n g^\tau (t_j,\theta ) (\hat{Z}_{j1}\!-\!Z_j) \!+\!\frac{1}{\sqrt{n}}\sum _{j=1}^n g^\tau (t_j,\theta )(Z_j\!-\!\beta (t_j,\theta ))\right) \!+\!o_p(1). \end{aligned}$$

Here, \(g(t_i,\theta )=grad_\theta (\beta (t_i,\theta ))\). Similar to the derivation for \(I_{n1}\), we have

$$\begin{aligned}&\frac{1}{\sqrt{n}}\sum _{j=1}^n g^\tau (t_j,\theta )(\hat{Z}_{i1}-Z_i)\\&\quad = \frac{1}{\sqrt{n}}\sum _{j=1}^n g^\tau (t_j,\theta )(S^{-1}_1(t_j)\delta _j x_j\epsilon _j +(\beta (t_j)-Z_j))\!+o_p(1). \end{aligned}$$

As a result,

$$\begin{aligned} I_{n2}=E(g(T,\theta )I(T\le t))E(g^\tau (T,\theta )g(T,\theta ))^{-1}\\ \; \times \frac{1}{\sqrt{n}}\sum _{j=1}^n g^\tau (t_j,\theta ) S^{-1}_1(t_j) \delta _j x_j\epsilon _j +o_p(1). \end{aligned}$$
(A.8)

For \(R_{n1}(t)\) in (A.1), based on the asymptotic representation of \(I_{n1}\) in (A.7) and \(I_{n2}\) in (A.8), we can have

$$\begin{aligned} R_{n1}(t)&= -E(g(T,\theta )I(T\le t))E(g^\tau (T,\theta )g(T,\theta ))^{-1} \frac{1}{\sqrt{n}}\\&\times \sum _{j=1}^n g^\tau (t_j,\theta ) S^{-1}_1(t_j) \delta _j x_j\epsilon _j\\&+\frac{1}{\sqrt{n}}\sum _{j=1}^n S^{-1}_1(t_j)I(t_j\le t) \delta _j x_j\epsilon _j+o_p(1)\\&= \frac{1}{\sqrt{n}}\sum _{j=1}^n L_1(\delta _j,t_j,y_j,x_j;t)+o_p(1). \end{aligned}$$

We notice that the functions \(L_1(\tilde{\delta },\tilde{t},\tilde{y},\tilde{x};t)\) over all indices \((t)\) are functions of a VC class. By VII 21 of Pollard (1984), \(R_{n1}(t)\) converges in distribution to the Gaussian process \(R_1(t)\). By continuous mapping theorem, we prove the limit distribution of \(T_{n1}\) in Theorem 1.

Next, we prove the convergence of \(R_{n2}(t)\) and \(T_{n2}\), it’s easy to prove that

$$\begin{aligned} R_{n2}(t)&= \frac{1}{\sqrt{n}}\sum _{i=1}^n (\hat{Z}_{i2}-Z_i)I(t_i\le t) -\frac{1}{\sqrt{n}}\sum _{i=1}^n (\beta (t_i,\hat{\theta })-\beta (t_i,\theta )) I(t_i\le t)\\&+\frac{1}{\sqrt{n}}\sum _{i=1}^n (Z_i-\beta (t_i,\theta ))I(t_i\le t)\\& =:J_{n1}-J_{n2}+J_{n3}. \end{aligned}$$
(A.9)

We first deal with the term \(J_{n1}\) in (A.9), similar to the derivation for \(\hat{Z}_{i1}-Z_i\) in (A.2), we obtain

$$\begin{aligned} \hat{Z}_{i2}-Z_i&= \frac{\delta _i}{\Delta _t(t_i)} (\hat{S}^{-1}(t_i)-S^{-1}(t_i))x_i\epsilon _i\\&+\left(1-\frac{\delta _i}{\Delta _t(t_i)}\right)S^{-1} (t_i)x_ix^\tau _i(\hat{\beta }(t_i)-\beta (t_i))\\&+\frac{\delta _i}{\hat{\Delta }_t(t_i)}S^{-1} (t_i)x_i\epsilon _i\!+\!(\hat{S}^{-1}(t_i)\!-\!S^{-1}(t_i))x_ix^\tau _i\beta (t_i)+O_p\left(\frac{1}{nh}+h^2\right). \end{aligned}$$

As a result, the term \(J_{n1}\) can be written as follows

$$\begin{aligned} J_{n1}&= \frac{1}{\sqrt{n}}\sum _{i=1}^n \frac{\delta _i}{\Delta _t(t_i)} (\hat{S}^{-1}(t_i)-S^{-1}(t_i))x_i\epsilon _i I(t_i\le t)\\&+\frac{1}{\sqrt{n}}\sum _{i=1}^n (\hat{S}^{-1}(t_i)-S^{-1}(t_i)) x_ix^\tau _i\beta (t_i)I(t_i\le t)\\&+\frac{1}{\sqrt{n}}\sum _{i=1}^n \left(1-\frac{\delta _i}{\Delta _t(t_i)}\right)S^{-1}(t_i)x_ix^\tau _i(\hat{\beta }(t_i)-\beta (t_i))I(t_i\le t)\\&+\frac{1}{\sqrt{n}}\sum _{i=1}^n\frac{\delta _i}{\hat{\Delta }_t(t_i)} S^{-1}(t_i)x_i\epsilon _i I(t_i\le t)+o_p(1)\\& =J_{n1,1}+J_{n1,2}+J_{n1,3}+J_{n1,4}+o_p(1) \end{aligned}$$
(A.10)

For \(J_{n1,1}\) in (A.10), similar to the derivation for \(I_{n1,1}\) in (A.4), we have

$$\begin{aligned} J_{n1,1}&= \frac{1}{\sqrt{n}}\sum _{j=1}^n s^{-1} (t_j)f(t_j)I(t_j\le t) E\left(\frac{\delta }{\Delta _t(t)} X\epsilon |T=t_j\right)\\&-\frac{1}{\sqrt{n}}\sum _{j=1}^n s^{-1}(t_j)f(t_j)x_j x^\tau _js^{-1} (t_j)f(t_j)I(t_j\le t) E\left(\frac{\delta }{\Delta _t(t)}X\epsilon |T=t_j\right)+o_p(1)\\& =o_p(1). \end{aligned}$$
(A.11)

Noting that \(J_{n1,2}\) in (A.10) equals to \(I_{n1,2}\) in (A.3) and we have

$$\begin{aligned} J_{n1,2}=\frac{1}{\sqrt{n}}\sum _{j=1}^n (\beta (t_j)-Z_j)I(t_j\le t)+o_p(1). \end{aligned}$$
(A.12)

For the term \(J_{n1,3}\), it can be derived that

$$\begin{aligned} J_{n1,3}&= \frac{1}{\sqrt{n}}\sum _{i=1}^n \Big (\left(1-\frac{\delta _i}{\Delta _t(t_i)}\right) S^{-1}(t_i)x_ix^\tau _iS^{-1}_1(t_i)f^{-1}(t_i)I(t_i\le t) \\&\times \frac{1}{n}\sum _{j=1}^n \delta _j x_j\epsilon _j K_h(t_i-t_j)\Big )+o_p(1)\\&= \frac{1}{\sqrt{n}}\sum _{j=1}^n S^{-1}(t_j)E\left(\left(1-\frac{\delta }{\Delta _t(T)}\right) XX^\tau |T=t_j\right)\\&\times S^{-1}_1(t_j)I(t_j\le t) \delta _j x_j\epsilon _j+o_p(1)\\& =\frac{1}{\sqrt{n}}\sum _{j=1}^n \Big (S^{-1}_1(t_j)\!-\!S^{-1}(t_j)S_2(t_j)S^{-1}_1 (t_j)\Big )I(t_j\le t) \delta _j x_j\epsilon _j\!+\!o_p(1), \end{aligned}$$
(A.13)

where \(S_2(t_j)=E\{({\delta }/{\Delta _t(T)})XX^\tau |T=t_j\}\).

As for \(J_{n1,4}\), it can be proved that

$$\begin{aligned} J_{n1,4}&= \frac{1}{\sqrt{n}}\sum _{i=1}^n\frac{\delta _i}{\Delta _t(t_i)}S^{-1}(t_i)x_i\epsilon _i I(t_i\le t) \\&+\frac{1}{\sqrt{n}}\sum _{i=1}^n\frac{\Delta _t(t_i)-\hat{\Delta }_t(t_i)}{\Delta ^2_t(t_i)}\delta _iS^{-1}(t_i)x_i\epsilon _i I(t_i\le t)+o_p(1)\\& =\frac{1}{\sqrt{n}}\sum _{i=1}^n\frac{\delta _i}{\Delta _t(t_i)}S^{-1}(t_i)x_i\epsilon _i I(t_i\le t)+o_p(1), \end{aligned}$$
(A.14)

where the last equation follows based on the following fact

$$\begin{aligned}&\frac{1}{\sqrt{n}}\sum _{i=1}^n\frac{\Delta _t(t_i)-\hat{\Delta }_t(t_i)}{\Delta ^2_t(t_i)}\delta _iS^{-1}(t_i)x_i\epsilon _i I(t_i\le t)\\&\quad =\frac{1}{\sqrt{n}}\sum _{i=1}^n\frac{\sum _{j=1}^n (\Delta _t(t_i)-\delta _j) K_h(t_i-t_j)}{nf(t_i)\Delta ^2_t(t_i)}\delta _iS^{-1}(t_i)x_i\epsilon _i I(t_i\le t)+o_p(1)\\&\quad =\frac{1}{\sqrt{n}}\sum _{j=1}^n \frac{(\Delta _t(t_j)-\delta _j)}{\Delta _t(t_j)}S^{-1}(t_j) I(t_j\le t)E(X\epsilon |T=t_j) +o_p(1)\\&\quad =o_p(1), \end{aligned}$$

where the last equation is from \(E(X\epsilon |T)= E(E(X\epsilon |X,T)|T)=E(XE(\epsilon |X,T) |T)=0\).

Combining the Eqs. (A.10)–(A.14), we get

$$\begin{aligned} J_{n1}=\frac{1}{\sqrt{n}}\sum _{j=1}^n \Big [\Big (S^{-1}_1(t_j)-S^{-1}(t_j)S_2(t_j)S^{-1}_1(t_j)+\frac{S^{-1}(t_j)}{\Delta _t(t_j)} \Big )I(t_j\le t) \delta _j x_j\epsilon _j\Big ]\\ \! + \frac{1}{\sqrt{n}}\sum _{j=1}^n (\beta (t_j)-Z_j)I(t_j\le t)+o_p(1). \end{aligned}$$
(A.15)

Now, we turn to prove \(J_{n2}\) in (A.9), and it can be derived that

$$\begin{aligned} J_{n2}&= E(g(T,\theta )I(T\le t))E(g^\tau (T,\theta )g(T,\theta ))^{-1}\\&\times \frac{1}{\sqrt{n}}\sum _{j=1}^n g^\tau (t_j,\theta ) (\hat{Z}_{j2}-\beta (t_j,\theta ))+o_p(1)\\&= E(g(T,\theta )I(T\le t))E(g^\tau (T,\theta )g(T,\theta ))^{-1}\\&\times \left(\! \frac{1}{\sqrt{n}}\sum _{j=1}^n g^\tau (t_j,\theta ) (\hat{Z}_{j2}-Z_j)\!+\! \frac{1}{\sqrt{n}}\sum _{j=1}^n g^\tau (t_j,\theta )(Z_j\!-\!\beta (t_j,\theta ))\!\right)\! +\!o_p(1). \end{aligned}$$

Noting that

$$\begin{aligned}&\frac{1}{\sqrt{n}}\sum _{j=1}^n g^\tau (t_j,\theta )(\hat{Z}_{i2}-Z_i) \\&\quad =\frac{1}{\sqrt{n}}\sum _{j=1}^n g^\tau (t_j,\theta )\\&\qquad \times \Big [\Big (S^{-1}_1(t_j) -S^{-1}(t_j)S_2(t_j)S^{-1}_1(t_j)+\frac{S^{-1}(t_j)}{\Delta _t(t_j)}\Big ) \delta _j x_j\epsilon _j\Big ]\\&\qquad +\frac{1}{\sqrt{n}}\sum _{j=1}^n g^\tau (t_j,\theta )(\beta (t_j)-Z_j)+o_p(1), \end{aligned}$$

we have

$$\begin{aligned} J_{n2}=E(g(T,\theta )I(T\le t))E(g^\tau (T,\theta )g(T,\theta ))^{-1}\\ \; \times \frac{1}{\sqrt{n}}\sum _{j=1}^n g^\tau (t_j,\theta ) \Big [\Big (S^{-1}_1(t_j)-S^{-1}(t_j)S_2(t_j)S^{-1}_1(t_j)+\frac{S^{-1} (t_j)}{\Delta _t(t_j)}\Big )\delta _j x_j\epsilon _j\Big ] +o_p(1). \end{aligned}$$
(A.16)

Thus, based on (A.9), (A.15) and (A.16), we have

$$\begin{aligned} R_{n2}(t)&= \frac{1}{\sqrt{n}}\sum _{j=1}^n \Big [\Big (S^{-1}_1(t_j) -S^{-1}(t_j)S_2(t_j)S^{-1}_1(t_j)+\frac{S^{-1}(t_j)}{\Delta _t(t_j)} \Big )I(t_j\le t) \delta _j x_j\epsilon _j\Big ]\\&-E(g(T,\theta )I(T\le t))E(g^\tau (T,\theta )g(T,\theta ))^{-1}\\&\times \frac{1}{\sqrt{n}}\sum _{j=1}^n g^\tau (t_j,\theta ) \Big [\Big (S^{-1}_1(t_j)-S^{-1}(t_j)S_2(t_j)S^{-1}_1(t_j) +\frac{S^{-1}(t_j)}{\Delta _t(t_j)}\Big ) \delta _j x_j\epsilon _j\Big ]+o_p(1)\\&= \frac{1}{\sqrt{n}}\sum _{j=1}^n L_2(\delta _j,t_j,y_j,x_j;t)+o_p(1), \end{aligned}$$

which converges in distribution to the Gaussian process \(R_2(t)\). By continuous mapping theorem, the asymptotical properties of \(T_{n2}\) is proved in Theorem 1.

Proof of Theorem 2

For \(R_{n1}(t)\) under the alternative hypothesis, we have

$$\begin{aligned} R_{n1}(t)&= \frac{1}{\sqrt{n}}\sum _{i=1}^n (\hat{Z}_{i1} -Z_i)I(t_i\le t)-\frac{1}{\sqrt{n}}\sum _{i=1}^n (\beta (t_i,\hat{\theta })-\beta (t_i,\theta )) I(t_i\le t)\\&+\frac{1}{\sqrt{n}}\sum _{i=1}^n (Z_i-\beta (t_i,\theta )) I(t_i\le t)\\& =:\tilde{I}_{n1}-\tilde{I}_{n2}+\tilde{I}_{n3}. \end{aligned}$$
(A.17)

Note that \(\beta (t)=\beta (t,\theta )+C_n G(t)\) and by a similar derivation as that for \(I_{n1},\,I_{n2}\) and \(I_{n3}\) in (A.1), we have

$$\begin{aligned} \tilde{I}_{n1}+ \tilde{I}_{n3}&= \frac{1}{\sqrt{n}}\sum _{j=1}^n S^{-1}_1(t_j)I(t_j\le t) \delta _j x_j\epsilon _j +\frac{1}{\sqrt{n}}\sum _{j=1}^n (\beta (t_j)-Z_j)I(t_j\le t) \\&+\frac{1}{\sqrt{n}}\sum _{j=1}^n (Z_j-\beta (t_j,\theta ))I(t_j\le t)\\& =\frac{1}{\sqrt{n}}\sum _{j=1}^n S^{-1}_1(t_j)I(t_j\le t) \delta _j x_j\epsilon _j+\frac{C_n}{\sqrt{n}}\sum _{j=1}^n G(t_j)I(t_j\le t). \end{aligned}$$
(A.18)

As for the term \(\tilde{I}_{n2}\), we have

$$\begin{aligned} \tilde{I}_{n2}&= E(g(T,\theta )I(T\le t))E(g^\tau (T,\theta )g(T,\theta ))^{-1}\qquad \\&\times \frac{1}{\sqrt{n}}\sum _{j=1}^n g^\tau (t_j,\theta ) \Big (S^{-1}_1(t_j)\delta _j x_j\epsilon _j+(\beta (t_j)-Z_j)\Big )\qquad \\&+E(g(T,\theta )I(T\le t))E(g^\tau (T,\theta )g(T,\theta ))^{-1}qquad\\&\times \frac{1}{\sqrt{n}}\sum _{j=1}^n g^\tau (t_j,\theta )(Z_j-\beta (t_j,\theta )) +o_p(1)\qquad \\&= E(g(T,\theta )I(T\le t))E(g^\tau (T,\theta )g(T,\theta ))^{-1}\qquad \\& \times \frac{1}{\sqrt{n}}\sum _{j=1}^n g^\tau (t_j,\theta ) \Big (S^{-1}_1(t_j)\delta _j x_j\epsilon _j+C_n G(t_j)\Big ) +o_p(1). \end{aligned}$$
(A.19)

Hence, by the Eqs. (A.17)–(A.19), we have

$$\begin{aligned} R_{n1}(t)&\!=-E(g(T,\theta )I(T\!\le \! t))E(g^\tau (T,\theta )g(T,\theta ))^{-1} \frac{1}{\sqrt{n}}\sum _{j=1}^n \! g^\tau (t_j,\theta ) S^{-1}_1(t_j)\delta _j x_j\epsilon _j \\&-E(g(T,\theta )I(T\le t))E(g^\tau (T,\theta )g(T,\theta ))^{-1} \frac{C_n}{\sqrt{n}}\sum _{j=1}^n g^\tau (t_j,\theta ) G(t_j)\\&+\frac{1}{\sqrt{n}}\sum _{j=1}^n S^{-1}_1(t_j)I(t_j\le t)\delta _j x_j\epsilon _j+\frac{C_n}{\sqrt{n}}\sum _{j=1}^n G(t_j)I(t_j\le t)+o_p(1). \end{aligned}$$

When \(\sqrt{n}C_n\) converges to \(C\) with \(C\ne 0\), we have

$$\begin{aligned}&\frac{C_n}{\sqrt{n}}\sum _{j=1}^n G(t_j)I(t_j\le t) \, \, \mathrm converges to \, \, CE(G(T)I(T\le t)),\\&\frac{C_n}{\sqrt{n}}\sum _{j=1}^n g^\tau (t_j,\theta ) G(t_j)\, \, \mathrm converges to \, \, CE(g^\tau (T,\theta ) G(T)). \end{aligned}$$

When \(n^rC_n\) converges to \(C\) with \(C\ne 0\) and \(0<r<1/2\), it’s easily derived that the test statistic converges in probability to infinity. Based on the above analysis for \(R_{n1}(t)\) under the alternative hypothesis, we can get the convergence properties of \(T_{n1}\) according to continuous mapping theorem.

Next, we prove the convergence of \(R_{n2}(t)\) under local alternatives. Similar to the argument for dealing with \(R_{n1}(t)\) under alternative hypothesis, we have

$$\begin{aligned} R_{n2}(t)&= \frac{1}{\sqrt{n}}\sum _{j=1}^n \Big [\Big (S^{-1}_1(t_j)-S^{-1}(t_j)S_2(t_j)S^{-1}_1(t_j)+\frac{S^{-1}(t_i)}{\Delta _t(t_i)}\Big )I(t_j\le t) \delta _j x_j\epsilon _j\Big ]\\&-E(g(T,\theta )I(T\le t))E(g^\tau (T,\theta )g(T,\theta ))^{-1} \frac{1}{\sqrt{n}}\sum _{j=1}^n g^\tau (t_j,\theta ) \Big [\Big (S^{-1}_1(t_j)\\&-S^{-1}(t_j)S_2(t_j)S^{-1}_1(t_j)+\frac{S^{-1}(t_j)}{\Delta _t(t_j)}\Big )I(t_j\le t) \delta _j x_j\epsilon _j\Big ]+\frac{C_n}{\sqrt{n}}\sum _{j=1}^n G(t_j)I(t_j\le t)\\&-E(g(T,\theta )I(T\le t))E(g^\tau (T,\theta )g(T,\theta ))^{-1} \frac{C_n}{\sqrt{n}}\sum _{j=1}^n g^\tau (t_j,\theta ) G(t_j)+o_p(1). \end{aligned}$$

Then the proofs for \(R_{n2}(t)\) and \(T_{n2}\) are finished, and Theorem 2 is proved.

Proof of Theorem 3

For \(\tilde{R}_{nk}\), it can be shown that

$$\begin{aligned} \tilde{R}_{nk}=\frac{1}{\sqrt{n}}\sum _{i=1}^n e_i L_k(\delta _i,t_i,y_i,x_i;t)+o_p(1). \end{aligned}$$

By similar arguments as that for Theorem 1, it can conclude that \(\tilde{R}_{nk}\) converges in distribution to a Gaussian process. It can be shown that \(E(\tilde{R}_{nk})=0\) and \(Cov(\tilde{R}_{nk}(t_1),\tilde{R}_{nk}(t_2))\) converges to \(Cov(R_k(t_1),R_k(t_2)\). By Theorem VII 21 of (Pollard (1984), p. 157), the theorem is proved.

 

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, W., Guo, X. Nonparametric checks for varying coefficient models with missing response at random. Metrika 76, 459–482 (2013). https://doi.org/10.1007/s00184-012-0399-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00184-012-0399-3

Keywords

Navigation