Skip to main content
Log in

An additive property of weak records from geometric distributions

  • Published:
Metrika Aims and scope Submit manuscript

Abstract

Let \(\{W_m\}{_{m\ge 1}}\) be the sequence of weak records from a discrete parent random variable, \(X\), supported on the non-negative integers. We obtain a new characterization of geometric distributions based on an additive property of weak records: \(X\) follows a geometric distribution if and only if for certain integers, \(n,\, s\ge 1, W_{n+s}\stackrel{d}{=}W_n+W^{\prime }_s\), with \(W^{\prime }_s\) independent of \(W_n\) and \(W^{\prime }_s\stackrel{d}{=} W_s\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahsanullah M (1995) Record statistics. Nova Sciences Publishers, Commack, New York

    MATH  Google Scholar 

  • Ahsanullah M (2008) Some characteristic properties of weak records of geometric distributions. J Stat Theory Appl 7(1):81–92

    MathSciNet  Google Scholar 

  • Ahsanullah M, Hijab O (2007) Some characterizations of geometric distributions by weak records. In: Ahsanullah M, Raqab M (eds) Recent developments in ordered random variables, chapt 12. Nova Science Publishers, Inc., New York, pp 187–195

    Google Scholar 

  • Aliev FA (1998) Characterization of distributions through weak records. J Appl Statist Sci 8:13–16

    MathSciNet  MATH  Google Scholar 

  • Aliev FA (1999) New characterization of discrete distributions through weak records. Theory Probab Appl 44:756–761

    Article  MATH  Google Scholar 

  • Arnold BC, Balakrishnan N, Nagaraja HN (1998) Records. Wiley, New York

    Book  MATH  Google Scholar 

  • Danielak K, Dembińska A (2007) Some characterizations of discrete distributions based on weak records. Statist Pap 48:479–489

    Article  MATH  Google Scholar 

  • Dembińska A (2007) A review on characterizations of discrete distributions based on records and kth records. Comm Statist Theory Methods 36:1381–1387

    Article  MathSciNet  MATH  Google Scholar 

  • Dembińska A, López-Blázquez F (2005) A characterization of geometric distribution through kth weak records. Comm Statist Theory Methods 34:2345–2351

    Article  MathSciNet  MATH  Google Scholar 

  • Hijab O, Ahsanullah M (2006) Weak records of geometric distributions and some characterizations. Pak J Stat 22(2):139–146

    MathSciNet  MATH  Google Scholar 

  • López-Blázquez F (2004) Linear prediction of weak records: the discrete case. Theory Probab Appl 48:718–723

    Article  MathSciNet  Google Scholar 

  • López-Blázquez F, Wesołowski J (2001) Discrete distributions for which the regression of the first record on the second is linear. Test 10:121–131

    Article  MathSciNet  MATH  Google Scholar 

  • López-Blázquez F, Salamanca-Miño B (2009) Random translation of records from geometric distributions. Comm Statist Theory Methods 38:2067–2077

    Article  MathSciNet  MATH  Google Scholar 

  • Nevzorov VB (2001) Records: Mathematica Theory. Translations of mathematical monographs, vol. 194. American Mathematical Society, Providence

    Google Scholar 

  • Stepanov AV (1993) A characterization theorem for weak records. Theory Probab Appl 38:762–764

    Article  MathSciNet  Google Scholar 

  • Vervaat W (1973) Limit distributions of records from discrete distributions. Stochastic Process Appl 1:317–334

    Article  MathSciNet  MATH  Google Scholar 

  • Wesołowski J, Ahsanullah M (2001) Linearity of regression for non-adjacent weak records. Statistica Sinica 11:39–52

    MathSciNet  MATH  Google Scholar 

  • Wesołowski J, López-Blázquez F (2004) Linearity of regression for the past weak and ordinary records. Statistics 38:457–464

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This research has been supported by Grants MTM2010-16949 and MTM2010-19576-C02-02 of Ministerio de Educación y Ciencia, Spain and FQM331, FQM355 and FQM5849 of Junta de Andalucía. We also thank the referees for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Castaño-Martínez.

Additional information

Communicated by George Weiss.

Appendix: Some results about combinatorial numbers

Appendix: Some results about combinatorial numbers

In the proof of our main result we used some properties of the combinatorial numbers. We collect these properties in this section.

Let \(a\) and \(b\) be non-negative integers. If \(a\ge b, \left(\begin{array}{l} a\\ b \end{array}\right)=a!/(b!(a-b)!)\). If \(a<b, \left(\begin{array}{l} a\\ b \end{array}\right)=0\).

Lemma 1

Let \(a, b, c\) and \(k\) be non-negative integers. Then

  1. (i)

    If \(b\ge c\),

    $$\begin{aligned} \sum _{j=0}^c \left(\begin{array}{c} a+j\\ j \end{array}\right) \left(\begin{array}{l} b-j\\ c-j \end{array}\right) = \left(\begin{array}{c} a+b+1\\ c \end{array}\right). \end{aligned}$$
    (36)
  2. (ii)

    If \(a\ge 1\)

    $$\begin{aligned} \left(\begin{array}{l} k+a\\ k+1 \end{array}\right) =\sum _{j=0}^{a-1} \left(\begin{array}{c} k+a-j-1\\ k \end{array}\right). \end{aligned}$$
    (37)
  3. (iii)

    For all \(k\ge 0\),

    $$\begin{aligned} \left(\begin{array}{c} k+a+b-j\\ k+1 \end{array}\right) -\left(\begin{array}{c} k+a-j\\ k+1 \end{array}\right) -\left(\begin{array}{c} k+b-j\\ k+1 \end{array}\right) \ge 0,\quad j\ge 0. \end{aligned}$$
    (38)

 

Proof

 

  1. (i)

    For any \(\alpha \ge 0, (1-z)^{-(\alpha +1)}=\sum _{j=0}^\infty \left(\begin{array}{c} \alpha +j\\ j \end{array}\right) z^j, |z|<1\). Consider the identity

    $$\begin{aligned} (1-z)^{-(a+1)}(1-z)^{-(b-c+1)}=(1-z)^{-(a+b-c+2)}, \quad |z|<1, \end{aligned}$$
    (39)

    expanding both sides of (39) and equating the coefficients of powers of degree \(k\ge 0\) in \(z,\) we obtain

    $$\begin{aligned} \sum _{j=0}^k \left(\begin{array}{c} a+j\\ j \end{array}\right) \left(\begin{array}{c} b-c+k-j\\ k-j \end{array}\right) = \left(\begin{array}{c} a+b-c+k+1\\ k \end{array}\right), \end{aligned}$$
    (40)

    and (36) follows from (40) with \(k=c\).

  2. (ii)

    It is not difficult to check by induction on \(a\) that

    $$\begin{aligned} \left(\begin{array}{l} k+a\\ k+1 \end{array}\right) =\sum _{i=0}^{a-1} \left(\begin{array}{c} k+i\\ k \end{array}\right) ,\quad k\ge 0, \end{aligned}$$
    (41)

    and (37) follows from (41) with the change of indexes \(i=a-1-j\).

  3. (iii)

    By induction on \(k\). If \(k=0\) the result is straightforward. Suppose that the inequality is valid for certain \(k\ge 0\) and note that for any non-negative integers, \(\alpha , \beta ,\)

    $$\begin{aligned} \left(\begin{array}{l} \alpha +1\\ \beta +1 \end{array}\right) =\frac{\alpha +1}{\beta +1} \left(\begin{array}{l} \alpha \\ \beta \end{array}\right) \end{aligned}$$
    (42)

    (this formula is trivially true if \(\alpha <\beta \)). Then, for any \(j\ge 0,\) using (42) and the hypothesis of induction,

    $$\begin{aligned} \left(\begin{array}{c} k+1+a+b-j\\ k+2 \end{array}\right)&= \frac{k+1+a+b-j}{k+2} \left(\begin{array}{c} k+a+b-j\\ k+1 \end{array}\right)\\&\ge \frac{k+1+a+b-j}{k+2}\left\{ \left(\begin{array}{c} k+a-j\\ k+1 \end{array}\right) + \left(\begin{array}{c} k+b-j\\ k+1 \end{array}\right) \right\} \\&\ge \frac{k+1+a-j}{k+2} \left(\begin{array}{c} k+a-j\\ k+1 \end{array}\right)\\&+\frac{k+1+b-j}{k+2} \left(\begin{array}{c} k+b-j\\ k+1 \end{array}\right)\\&\ge \left(\begin{array}{c} k+1+a-j\\ k+2 \end{array}\right) + \left(\begin{array}{c} k+1+b-j\\ k+2 \end{array}\right). \end{aligned}$$

    \(\square \)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castaño-Martínez, A., López-Blázquez, F. & Salamanca-Miño, B. An additive property of weak records from geometric distributions. Metrika 76, 449–458 (2013). https://doi.org/10.1007/s00184-012-0398-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00184-012-0398-4

Keywords

Navigation