Skip to main content
Log in

A new non-linear AR(1) time series model having approximate beta marginals

  • Published:
Metrika Aims and scope Submit manuscript

Abstract

We consider the mixed AR(1) time series model

$$X_t=\left\{\begin{array}{ll}\alpha X_{t-1}+ \xi_t \quad {\rm w.p.} \qquad \frac{\alpha^p}{\alpha^p-\beta ^p},\\ \beta X_{t-1} + \xi_{t} \quad {\rm w.p.} \quad -\frac{\beta^p}{\alpha^p-\beta ^p} \end{array}\right.$$

for −1 < β p ≤ 0 ≤ α p < 1 and α pβ p > 0 when X t has the two-parameter beta distribution B2(p, q) with parameters q > 1 and \({p \in \mathcal P(u,v)}\), where

$$\mathcal P(u,v) = \left\{u/v : u < v,\,u,v\,{\rm odd\,positive\,integers} \right\}.$$

Special attention is given to the case p = 1. Using Laplace transform and suitable approximation procedures, we prove that the distribution of innovation sequence for p = 1 can be approximated by the uniform discrete distribution and that for \({p \in \mathcal P(u,v)}\) can be approximated by a continuous distribution. We also consider estimation issues of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abate J, Whitt W (1995) Numerical inversion of Laplace transforms of probability distributions. ORSA J Comput 7: 36–43

    Article  MATH  Google Scholar 

  • Billingsley P (1981) The Lindeberg-Levy theorem for martingales. Proc Am Math Soc 12: 788–792

    MathSciNet  Google Scholar 

  • Boubacar Mainassara Y (2000) Multivariate portmanteau test for structural VARMA models with uncorrelated but non-independent error terms. J Stat Plan Inf 141: 2961–2975

    Article  MathSciNet  Google Scholar 

  • Brockwell PJ, Davis RA (1987) Time series: theory and methods. Springer, New York

    MATH  Google Scholar 

  • Choy K (2001) Outlier detection for stationary time series. J Stat Plan Inf 99: 111–127

    Article  MathSciNet  MATH  Google Scholar 

  • Coleman JS (1964) Introduction to mathematical sociology. Collier-Macmillan, London

    Google Scholar 

  • Dewald LS Sr, Lewis PAW, McKenzie E (1988) l-Laplace processes. Technical Report, Naval Postgraduate School, California

    Google Scholar 

  • Frühwirth-Schnatter S, Kaufmann S (2002) Bayesian clustering of many short time series. Working Paper, Vienna University of Economics and Business Administration

  • Hamilton JD (1994) Time series analysis. Princeton University Press, Princeton

    MATH  Google Scholar 

  • Hosking JRM (1984) Modeling persistence in hydrological time series using fractional differencing. Water Resour Res 20: 1898–1908

    Article  Google Scholar 

  • Hwang SY, Basawa IV (2005) Explosive random-coefficient AR(1) processes and related asymptotics for least-squares estimation. J Time Ser Anal 26: 807–824

    Article  MathSciNet  MATH  Google Scholar 

  • Hwang SY, Basawa IV, Kim TY (2006) Least squares estimation for critical random coefficient first-order autoregressive processes. Stat Probab Lett 76: 310–317

    Article  MathSciNet  MATH  Google Scholar 

  • Karlin S, Taylor HM (1975) A first course in stochastic processes. 2nd edn. Academic Press, New York

    MATH  Google Scholar 

  • Karlin S, Taylor HM (1981) A second course in stochastic processes. Academic Press, New York

    MATH  Google Scholar 

  • Karlsen H, Tjøstheim D (1980) Consistent estimates for the NEAR(2) and NLAR(2) time series models. J R Stat Soc B 50: 313–320

    Google Scholar 

  • Lewis PAW (1985) Some simple models for continuous variate time series. J Am Water Res Assoc 21: 635–644

    Article  Google Scholar 

  • Massey WF, Montgomery DB, Morrison DG (1970) Stochastic models of buyer behavior. Massachusetts Institute of Technology Press, Cambridge

    Google Scholar 

  • McKenzie E (1985) An autoregressive process for beta random variables. Manage Sci 31: 988–997

    Article  MATH  Google Scholar 

  • McKenzie E (1986) Autoregressive moving-average processes with negative-binomial and geometric marginal distributions. Adv Appl Probab 18: 679–705

    Article  MathSciNet  MATH  Google Scholar 

  • McKenzie E (2003) Discrete variate time series. In: Rao CR, Shanbhag DN (eds) Handbook of statistics. Elsevier, Amsterdam, pp 573–606

    Google Scholar 

  • McLeod AI, Hipel KW (1978) Preservation of the resealed adjusted range 1: a reassessment of the Hurst phenomenon. Water Resour Res 14: 491–508

    Article  Google Scholar 

  • Nicholls DF, Quinn BG (1982) Random coefficient autoregressive models: an introduction. Lecture notes in statistics, vol 11. Springer, New York

    Book  Google Scholar 

  • Popović BV (2010) AR(1) time series with approximated beta marginal. Publ Inst Math (Belgrade) (N.S.) 88: 87–98

    Article  Google Scholar 

  • Popović BV, Pogány TK (2011) New mixed AR(1) time series models having approximated beta marginals. Math Comput Modell 54: 584–597

    Article  MATH  Google Scholar 

  • Popović BV, Pogàny TK, Nadarajah S (2010) On mixedAR(1) time series model with approximated beta marginal. Stat Probab Lett 80: 1551–1558

    Article  MATH  Google Scholar 

  • Pötzelberger K (1990) A characterization of random-coefficient AR(1) models. Stoch Process Appl 34: 171–180

    Article  MATH  Google Scholar 

  • Pourahmadi M (1988) Stationarity of the solution of x t  = a t x t−1 + ξ t and analysis of non-Gaussian dependent random variables. J Time Ser Anal 9: 225–239

    Article  MathSciNet  MATH  Google Scholar 

  • R Development Core Team: (2009) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Ridout MS (2009) Generating random numbers from a distribution specified by its Laplace transform. Stat Comput 19: 439–540

    Article  MathSciNet  Google Scholar 

  • Rocha AV, Cribari-Neto F (2009) Beta autoregressive moving average models. Test 18: 529–545

    Article  MathSciNet  MATH  Google Scholar 

  • Taddy MA (2010) Autoregressive mixture models for dynamic spatial Poisson processes: Application to tracking intensity of violent crime. J Am Stat Assoc 105: 1403–1417

    Article  MathSciNet  Google Scholar 

  • Varadhan R, Gilbert P (2009) BB: an R package for solving a large system of nonlinear equations and for optimizing a high-dimensional nonlinear objective function. J Stat Softw 32: 1–26

    Google Scholar 

  • Wallis KF (1987) Time series analysis of bounded economic variables. J Time Ser Anal 8: 115–123

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saralees Nadarajah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Popović, B.V., Nadarajah, S. & Ristić, M.M. A new non-linear AR(1) time series model having approximate beta marginals. Metrika 76, 71–92 (2013). https://doi.org/10.1007/s00184-011-0376-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00184-011-0376-2

Keywords

Navigation