Skip to main content

Mixed AR(1) Time Series Models with Marginals Having Approximated Beta Distribution

  • Conference paper
  • First Online:
Advances in Time Series Analysis and Forecasting (ITISE 2016)

Part of the book series: Contributions to Statistics ((CONTRIB.STAT.))

Included in the following conference series:

  • 1890 Accesses

Abstract

Two different mixed first order AR(1) time series models are investigated when the marginal distribution is a two-parameter Beta \(\mathrm{B}_2(p,q)\). The asymptotics of Laplace transform for marginal distribution for large values of the argument shows a way to define novel mixed time-series models which marginals we call asymptotic Beta. The new model’s innovation sequences distributions are obtained using Laplace transform approximation techniques. Finally, the case of generalized functional Beta \(\mathrm{B}_2(G)\) distribution’s use is discussed as a new parent distribution. The chapter ends with an exhaustive references list.

Dedicated to Professor Jovan Mališić to his 80th birthday anniversary.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The LT of a PDF actually coincides with the moment generating function \(\mathsf M_X\) of the input rv X with negative parameter \(\mathsf E\, \mathrm{e}^{-sX} \equiv \mathsf M_X(-s)\).

  2. 2.

    Updated extensions of Erdélyi’s theorem are obtained also in [24] and [39].

References

  1. Abate, J., Whitt, W.: Numerical inversion of Laplace transforms of probability distributions. ORSA J. Comput. 7(1), 36–43 (1995)

    Article  MATH  Google Scholar 

  2. Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Applied Mathematics Series, vol. 55. Tenth Printing, National Bureau of Standards (1972)

    Google Scholar 

  3. Chernick, M.: A limit theorem for the maximum of autoregressive processes with uniform marginal distribution. Ann. Probab. 9, 145–149 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cordeiro, G.M., de Castro, M.: A new family of generalized distributions. J. Stat. Comput. Simul. 81(7), 883–898 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Erdélyi, A.: Asymptotic Expansions. Dover, New York (1956)

    MATH  Google Scholar 

  6. Fletcher, S., Ponnambalam, K.: Estimation of reservoir yield and storage distribution using moments analysis. J. Hydrol. 182, 259–275 (1996)

    Article  Google Scholar 

  7. Gaver, D., Lewis, P.: First order autoregressive Gamma sequences and point processes. Adv. Appl. Probab. 12, 727–745 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hamilton, J.: Time Series Analysis. Princeton University Press, Princeton (1994)

    MATH  Google Scholar 

  9. Jacobs, P.A., Lewis, P.A.W.: A mixed autoregressive moving average exponential sequence and point process EARMA (1, 1). Adv. Appl. Probab. 9, 87–104 (1977)

    MathSciNet  MATH  Google Scholar 

  10. Jevremović, V.: Two examples of nonlinear process with mixed exponential marginal distribution. Stat. Probab. Lett. 10, 221–224 (1990)

    Article  Google Scholar 

  11. Jevremović, V.: Statistical properties of mixed time series with exponentially distributed marginals. PhD Thesis. University of Belgrade, Faculty of Science [Serbian] (1991)

    Google Scholar 

  12. Jones, M.: Kumaraswamy’s distribution: a beta-type distribution with some tractability advantages. Stat. Methodol. 6, 70–81 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Karlsen, H., Tjøstheim, D.: Consistent estimates for the NEAR (2) and NLAR (2) time series models. J. Roy. Stat. Soc. B 50(2), 120–313 (1988)

    MathSciNet  Google Scholar 

  14. Kumaraswamy, P.: A generalized probability density function for double-bounded random processes. J. Hydrol. 46, 79–88 (1980)

    Article  Google Scholar 

  15. Lawrence, A.J.: Some autoregressive models for point processes. In: Bártfai, P., Tomkó, J. (eds.) Point Processes and Queuing Problems, Colloquia Mathematica Societatis János Bolyai 24. North Holland, Amsterdam (1980)

    Google Scholar 

  16. Lawrence, A.J.: The mixed exponential solution to the first order autoregressive model. J. Appl. Probab. 17, 546–552 (1980)

    Article  MathSciNet  Google Scholar 

  17. Lawrence, A.J., Lewis, P.A.W.: A new autoregressive time series model in exponential variables (near(1)). Adv. Appl. Probab. 13, 826–845 (1980)

    Article  MathSciNet  Google Scholar 

  18. Lawrence, A.J., Lewis, P.A.W.: A mixed exponential time-series model. Manage. Sci. 28(9), 1045–1053 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  19. Mališić, J.: On exponential autoregressive time series models. In: Bauer, P., et al. (eds.) Proceedings of Mathematical Statistics and Probability Theory (Bad Tatzmannsdorf, 1986), vol. B, pp. 147–153. Reidel, Dordrecht (1987)

    Google Scholar 

  20. Mališić, J.: Some properties of the variances of the sample means in autoregressive time series models. Zb. Rad. (Kragujevac) 8, 73–79 (1987)

    MathSciNet  MATH  Google Scholar 

  21. McKenzie, E.: An autoregressive process for beta random variables. Manage. Sci. 31, 988–997 (1985)

    Article  MATH  Google Scholar 

  22. Nadarajah, S.: Probability models for unit hydrograph derivation. J. Hydrol. 344, 185–189 (2007)

    Article  Google Scholar 

  23. Nadarajah, S.: On the distribution of Kumaraswamy. J. Hydrol. 348, 568–569 (2008)

    Article  Google Scholar 

  24. Nemes, G.: An explicit formula for the coefficients in Laplace’s method. Constr. Approx. 38(3), 471–487 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Novković, M.: Autoregressive time series models with Gamma and Laplace distribution. MSc Thesis. University of Belgrade, Faculty of Mathematics [Serbian] (1997)

    Google Scholar 

  26. Olver, F.W.J., Olde Daalhuis, A.B., Lozier, D.W., Schneider, B.I., Boisvert, R.F., Clark, C.W., Miller, B.R., Saunders, B.V. (eds.): NIST Digital Library of Mathematical Functions. §2.3. (iii) Laplace’s Method. Release 1.0.13 of 2016-09-16. http://dlmf.nist.gov/

  27. Popović, B.Č.: Prediction and estimates of parameters of exponentially distributed \(ARMA\) series. PhD Thesis. University of Belgrade, Faculty of Science [Serbian] (1990)

    Google Scholar 

  28. Popović, B.Č.: Estimation of parameters of RCA with exponential marginals. Publ. Inst. Math. (Belgrade) (N.S.) 54, 135–143 (1993)

    Google Scholar 

  29. Popović, B.V., Pogány, T.K., Nadarajah, S.: On mixed \(AR(1)\) time series model with approximated Beta marginal. Stat. Probab. Lett. 80, 1551–1558 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Popović, B.V.: Some time series models with approximated beta marginals. PhD Thesis. University of Niš, Faculty of Science [Serbian] (2011)

    Google Scholar 

  31. Popović, B.V., Pogány, T.K.: New mixed \(AR(1)\) time series models having approximated beta marginals. Math. Comput. Model. 54, 584–597 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Pourahmadi, M.: Stationarity of the solution of \(x_t=a_tx_{t-1}+\xi _{t}\) and analysis of non-gaussian dependent random variables. J. Time Ser. Anal. 9, 225–239 (1988)

    Article  MathSciNet  Google Scholar 

  33. Ridout, M.: Generating random numbers from a distribution specified by its Laplace transform. Stat. Comput. 19, 439–450 (2009)

    Article  MathSciNet  Google Scholar 

  34. Ristić, M.M.: Stationary autoregressive uniformly distributed time series. PhD Thesis. University of Niš, Faculty of Science (2002)

    Google Scholar 

  35. Ristić, M.M., Popović, B.Č.: The uniform autoregressive process of the second order. Stat. Probab. Lett. 57, 113–119 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  36. Sim, C.H.: Simulation of Weibull and gamma autoregressive stationary process. Comm. Stat. B-Simul. Comput. 15(4), 1141–1146 (1986)

    Google Scholar 

  37. Stanković, B.: On the function of E.M. Wright. Publ. Inst. Math. (Belgrade) (N.S.) 10, 113–124 (1970)

    Google Scholar 

  38. Watson, G.N.: The harmonic functions associated with the parabolic cylinder. Proc. London Math. Soc. 2(17), 116–148 (1918)

    Article  MathSciNet  MATH  Google Scholar 

  39. Wojdylo, J.: On the coefficients that arise from Laplace’s method. J. Comput. Appl. Math. 196(1), 241–266 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tibor K. Pogány .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Pogány, T.K. (2017). Mixed AR(1) Time Series Models with Marginals Having Approximated Beta Distribution. In: Rojas, I., Pomares, H., Valenzuela, O. (eds) Advances in Time Series Analysis and Forecasting. ITISE 2016. Contributions to Statistics. Springer, Cham. https://doi.org/10.1007/978-3-319-55789-2_12

Download citation

Publish with us

Policies and ethics