Skip to main content
Log in

Bayesian inference of the fractional Ornstein–Uhlenbeck process under a flow sampling scheme

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

Using recent developments in econometrics and computational statistics we consider the estimation of the fractional Ornstein–Uhlenbeck process under a flow sampling scheme. To address the problem, we adopt throughout the paper an exact discretization approach. A flow sampling scheme arises, for example, naturally in modelling asset prices in continuous time since the time integral over successive observations defines the observable increments of asset log-prices. Exact discretization delivers an ARIMA(1,1,1) model for log-prices with a fractional driving noise. Building on the resulting exact discretization formulae and covariance function, a new Markov Chain Monte Carlo scheme is proposed and apply it to investigate the properties of both the time and frequency domain likelihoods/posteriors. For the exact discrete model, we adopt a general sampling interval of length h. This allows us to determine the optimal choice of h independent of the sample size. To illustrate the methods, with no ambition to a comprehensive data analysis, we use high frequency stock price data showing the relevance of aggregation over time issues in modelling asset prices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. The matrix Ω becomes frequently non-invertible numerically. To address this problem, we use Tykhonov regularization of the matrix. The regularization parameter is chosen so that starting from a value 10−12 the matrix becomes invertible numerically. We monitor this constant so that it does not become excessively large. On the average, the regularization constant is close to 10−5 (relative to the smallest non-zero eigenvalue) for both artificial and real data. Draws for which this does not hold are discarded. This never happened in more than 5% of all draws.

  2. The Jeffreys prior is approximated using 1000 simulations of the data generating process. We opted for this choice after conducting experiments with 500, 1000, and 5000 simulations in a preliminary investigation for a wide range of parameter values.

References

  • Aıt-Sahalia Y (1999) Transition densities for interest rate and other nonlinear diffusions. J Finance 54:1361–1395

    Article  MathSciNet  Google Scholar 

  • Aıt-Sahalia Y (2002) Maximum likelihood estimation of discretely sampled diffusion: a closed-form approximation approach. Econometrica 70:223–262

    Article  MathSciNet  MATH  Google Scholar 

  • Aıt-Sahalia Y, Mykland PA, Zhang L (2005) How often to sample a continuous time process in the presence of market microstructure noise. Rev Financ Stud 18:351–416

    Article  MATH  Google Scholar 

  • Arnold L (1974) Stochastic differential equations: theory and applications. Wiley, Newyork

    MATH  Google Scholar 

  • Beran J (1994) Statistics for long-memory processes. Chapman & Hall, London

    MATH  Google Scholar 

  • Bergstrom AR (1983) Gaussian estimation of structural parameters in higher order continuous time dynamic models. Econometrica 51:117–152

    Article  MathSciNet  MATH  Google Scholar 

  • Bergstrom AR (1984) Continuous time stochastic models and issues of aggregation over time. In: Griliches Z, Intriligator MD (eds) Handbook of econometrics, vol 2. Elsevier, Amsterdam

    Google Scholar 

  • Beskos A, Papaspiliopoulos O, Roberts GO, Fearnhead P (2006) Exact and computationally efficient likelihood-based estimation for discretely observed diffusion processes. J R Stat Soc Ser B Methodol 68:1–29

    Article  MathSciNet  MATH  Google Scholar 

  • Bouchaud JP, Kockelkoren J, Potters M (2006) Random walks, liquidity molasses and critical response in financial markets. Quant Finance 6(02):115–123

    Article  MathSciNet  MATH  Google Scholar 

  • Brandt MW, Santa-Clara P (2002) Simulated likelihood estimation of diffusions with an application to exchange rate dynamics in incomplete markets. J Financ Econ 63:161–210

    Article  Google Scholar 

  • Brockwell PJ, Davis RA (1991) Time series: theory and methods, 2nd edn. Springer, Berlin

    Book  MATH  Google Scholar 

  • Chambers MJ (1996) The estimation of continuous parameter long-memory time series models. Econometr Theory 12:374–390

    Article  MathSciNet  Google Scholar 

  • Chambers MJ (2004) Testing for unit roots with flow data and varying sampling frequency. J Econometr 119:1–18

    Article  MathSciNet  MATH  Google Scholar 

  • Chambers MJ (2010) Cointegration and sampling frequency. Econometr J 13:1–20

    Article  Google Scholar 

  • Cramer H, Leadbetter MR (1967) Stationary and related stochastic processes. Dover Publications, Inc., Mineola

    MATH  Google Scholar 

  • Duffie D (1992) Dynamic asset pricing theory. Princeton University Press, Princeton

    MATH  Google Scholar 

  • Durham G, Gallant A (2002) Numerical techniques for maximum likelihood estimation of continuous-time diffusion processes. J Business Econ Stat 20(3):297–338

  • Elerian O, Chib S, Shephard N (2001) Likelihood inference for discretely observed non-linear diffusions. Econometrica 69:959–993

    Article  MathSciNet  MATH  Google Scholar 

  • Eraker B (2001) MCMC analysis of diffusion models with application to finance. J Bus Econ Stat 19(2):177–191

    Article  MathSciNet  Google Scholar 

  • Geweke J (1992) Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments (with discussion). In: Bernardo JM, Berger JO, Dawid AP, Smith AFM (eds) Bayesian statistics, vol 4. Oxford University Press, Oxford, pp 169–193

  • Giraitis L, Robinson PM (2002) Parametric estimation under long-range dependence. In: Doukhan P, Oppenheim G, Taqqu M (eds) Theory and applications of long-range dependence. Birkhauser, Basel

    Google Scholar 

  • Girolami M, Calderhead B (2011) Riemann manifold Langevin and Hamiltonian Monte Carlo methods. J R Stat Soc B 73(2):123–214

    Article  MathSciNet  Google Scholar 

  • Golightly A, Wilkinson DJ (2005) Bayesian inference for stochastic kinetic models using a diffusion approximation. Biometrics 61(3):781–788

    Article  MathSciNet  MATH  Google Scholar 

  • Griffin JE, Oomen RCA (2008) Sampling returns for realized variance calculations: tick time or transaction time? Econometr Rev 27(1–3):230–253

    Article  MathSciNet  MATH  Google Scholar 

  • Hannan EJ, Deistler M (1988) The statistical theory of linear systems. Wiley, Newyork

    MATH  Google Scholar 

  • Jensen MJ (2000) An alternative maximum likelihood estimator of long-memory processes using compactly supported wavelets. J Econ Dyn Control 24:361–387

    Article  MathSciNet  MATH  Google Scholar 

  • Jones CS (1999) Bayesian estimation of continuous-time finance models. Unpublished working paper. University of Rochester

  • Kim S, Shephard N, Chib S (1998) Stochastic volatility: likelihood inference and comparison with ARCH models. Rev Econ Stud 65:361–393

    Article  MATH  Google Scholar 

  • Kleptsyna ML, Le Breton A (2002) Statistical analysis of the fractional Ornstein-Uhlenbeck type process. Stat Infer Stoch Process 5:229–248

    Article  MathSciNet  MATH  Google Scholar 

  • Lillo F, Farmer JD (2004) The long memory of efficient markets. Stud Nonlin Dyn Econometr 8:1

    MATH  Google Scholar 

  • Lo AL, Mackinlay AC (1999) A non- random walk down wall street. Princeton University Press, Princeton

    Google Scholar 

  • Lo AL, Wang J (1995) Implementing option pricing models when asset returns are predictable. J Finance 50(1):87–129

    Article  Google Scholar 

  • Mandelbrot BB, Van Ness JW (1968) Fractional Brownian motions, fractional noises and applications. SIAM Rev. 10(4):422–437

    Article  MathSciNet  MATH  Google Scholar 

  • Mulligan R (2004) Fractal analysis of highly volatile markets: an application to technology equities. Q Rev Econ Financ 44:155–179

    Article  Google Scholar 

  • Papaspiliopoulos O, Roberts GO, Skold M (2003) Non-centered parameterizations for hierarchical models and data augmentation. In: Bernardo JM, Bayarri MJ, Berger JO, Dawid AP, Heckerman D, Smith AFM, West M (eds) Bayesian statistics, vol 7. Oxford University Press, Oxford, pp 307–326

    Google Scholar 

  • Papaspiliopoulos O, Roberts GO, Taylor KB (2015) Exact sampling of diffusions with a discontinuity in the drift. ArXiv e-prints

  • Pedersen AR (1995) A new approach to maximum likelihood estimation for stochastic differential equations based on discrete observations. Scand J Stat 22:55–71

    MathSciNet  MATH  Google Scholar 

  • Percival DB, Walden AT (2006) Wavelet methods for time series analysis. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Perron P, Vodoumou C (2004) Tests of return predictability: an analysis of their properties based on a continuous time asymptotic framework. J Empir Financ 11:203–230

    Article  Google Scholar 

  • Phillips PCB (1991) Error correction and long-run equilibrium in continuous time. Econometrica 59(4):967–980

    Article  MathSciNet  MATH  Google Scholar 

  • Pipiras V, Taqqu M (2002) Fractional calculus and its connections to fractional Brownian motion. In: Doukhan P, Oppenheim G, Taqqu M (eds) Theory and applications of long-range dependence. Birkhauser, Basel

    Google Scholar 

  • Roberts GO, Stramer O (2001) On inference for partially observed nonlinear diffusion models using the Metropolis-Hastings algorithm. Biometrika 88(4):603–621

    Article  MathSciNet  MATH  Google Scholar 

  • Samorodnitsky G, Taqqu MS (1994) Stable non-Gaussian random processes. Chapman and Hall, London

    MATH  Google Scholar 

  • Simos T (2008) The exact discrete model of a system of linear stochastic differential equations driven by fractional noise. J Time Ser Anal 29(6):1019–1031

    Article  MathSciNet  MATH  Google Scholar 

  • Simos T (2012) On the exact discretization of a continuous time AR(1) model driven by either long-memory or antipersistent innovations: a fractional algebra approach. J Time Ser Econometr 4(2):1928–1941

    MathSciNet  Google Scholar 

  • Tsai H, Chan KS (2005a) Maximum likelihood estimation of linear continuous time long memory processes with discrete time data. J R Stat Soc Ser B 67(5):703–716

    Article  MathSciNet  MATH  Google Scholar 

  • Tsai H, Chan KS (2005b) Quasi-maximum likelihood estimation for a class of continuous-time long memory processes. J Time Ser Anal 26(5):691–713

    Article  MathSciNet  MATH  Google Scholar 

  • Tsai H, Chan KS (2005c) Temporal aggregation of stationary and nonstationary continuous-time processes. Scand J Stat 32:583–597

    Article  MATH  Google Scholar 

  • Verdinelli I, Wasserman L (1995) Computing Bayes factors using a generalization of the Savage–Dickey density ratio. J Am Stat Assoc 90(430):614–618

    Article  MathSciNet  MATH  Google Scholar 

  • Wachter JA (2002) Portfolio and consumption decisions under mean-reverting returns: an exact solution for complete markets. J Financ Quant Anal 37(1):63–91

    Article  Google Scholar 

  • Xiao W, Zhang W, Xu W (2011) Parameter estimation for fractional Ornstein-Uhlenbeck processes at discrete observations. Appl Math Model 35:4196–4207

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang Pu, Xiao W, Zhang X, Niu P (2014) Parameter identification for fractional Ornstein-Uhlenbeck processes based on discrete observation. Econ Model 36:198–203

    Article  Google Scholar 

  • Zhu Z, Taqqu MS (2005) Impact of the sampling rate on the estimation of the parameters of fractional Brownian motion. J Time Ser Anal 27(3):367–380

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theodore Simos.

Appendix

Appendix

1.1 Proof of Lemma 1

First, using properties of the Gamma and Beta special functions, it is a straightforward algebraic exercise to prove that \( \frac{{\varLambda^{2} (H)}}{{\varGamma^{2} \left( {H + \frac{1}{2}} \right)}} = \frac{1}{2\pi }V(H)\frac{1}{H(2H - 1)} \), where \( \varLambda^{2} (H) = - \frac{{2\varGamma (H + \frac{1}{2})\varGamma ( - 2H)}}{{\varGamma (\frac{1}{2} - H)}} \) and \( V(H) = 2\varGamma (2 - 2H)\sin \left[ {\frac{\pi }{2}\left( {2H - 1} \right)} \right] \).

Next, define the increments of fBm by \( B^{H} (\Delta_{t} ) = B^{H} (t) - B^{H} (t - h) \), \( \Delta_{t} = \left( {t - h,\,\,t} \right) \). Then by Assumption 2 we obtain

$$ \frac{1}{{h^{2} }}E\left[ {B^{H} (\Delta_{r} )B^{H} (\Delta_{s} )} \right] = \frac{{\sigma^{2} }}{{h^{2} }}\frac{{\varLambda^{2} (H)}}{{2\varGamma^{2} \left( {H + \frac{1}{2}} \right)}}\left[ {\left| {r - s + h} \right|^{2H} + \left| {r - s - h} \right|^{2H} - 2\left| {r - s} \right|^{2H} } \right] $$

However, \( \frac{{\left| {r - s + h} \right|^{2H} + \left| {r - s - h} \right|^{2H} - 2\left| {r - s} \right|^{2H} }}{{h^{2} }} \to 2H(2H - 1)\left| {r - s} \right|^{2H - 2} \) as \( h \to 0 \). Thus, we obtain (see also proposition 7.2.10 of Samorodnitsky and Taqqu 1994) \( \frac{1}{{h^{2} }}E\left[ {B^{H} (\Delta_{r} )B^{H} (\Delta_{s} )} \right] \to \frac{{\sigma^{2} }}{2\pi }V(H)\left| {r - s} \right|^{2H - 2} \) as \( h \to 0 \). Divide \( \left[ {a,\,\,b} \right] \) into equal subintervals \( \Delta_{n1} , \cdots ,\Delta_{nn} \) of length \( h_{n} \) and let \( \phi_{n1} , \ldots ,\phi_{nn} \), be numbers defining \( \phi \) such as \( \phi_{n} (t) = \phi_{nk} ,\,\,t \in \Delta_{nk} ,\,k = 1, \ldots ,n \). We similarly divide \( \left[ {c,\,\,d} \right] \) into subintervals and set \( \psi_{n} (t) = \psi_{nk} ,\,\,t \in \Delta_{nk} ,\,k = 1, \ldots ,n \). Then, we can define the integral of a deterministic function with respect to the fBm, namely \( \int_{a}^{b} {\phi (r)dB^{H} (r)} \), as the mean square limit of Riemann–Stieltjes approximating sums \( \sum\nolimits_{k = 1}^{n} {\varphi_{nk} \frac{1}{{h_{n} }}B^{H} (\Delta_{nk} )} \) (see Cramer and Leadbetter 1967, p. 87 and Arnold 1974, Sect. 4.4) so that

$$ E\left( {\sum\nolimits_{k = 1}^{n} {\varphi_{nk} \frac{1}{{h_{n} }}B^{H} (\Delta_{nk} )} } \right)\left( {\sum\nolimits_{j = 1}^{m} {\psi_{mj} \frac{1}{{h_{m} }}B^{H} (\Delta_{mj} )} } \right) = \sum\nolimits_{k = 1}^{n} {\sum\nolimits_{j = 1}^{m} {\varphi_{nk} \psi_{mj} \frac{1}{{h_{n} h_{m} }}E} } \left[ {B^{H} (\Delta_{nk} )B^{H} (\Delta_{mj} )} \right] \to $$

\( \frac{{\sigma^{2} }}{2\pi }V(H)\int_{a}^{b} {\int_{c}^{d} {\phi (r)\psi (s)\left| {r - s} \right|^{2H - 2} } } drds \), as \( n,m \to \infty \). Pipiras and Taqqu (2002) obtain similar results (p. 191 Eq. 6.11) via fractional calculus.

1.2 Proof of Theorem 1

Under Assumption 1 the solution of (1) in the interval ((t-1)h, th) satisfies

$$ r_{th} = e^{ah} r_{{\left( {t - 1} \right)h}} + v + \xi_{th} ,\;t = 1,\,2, \ldots ,N $$
(28)

where \( r_{th} = r(th) \),

$$ v = c\int_{0}^{h} {e^{as} ds} $$
(29)

and

$$ \xi_{th} = \int_{{\left( {t - 1} \right)h}}^{th} {e^{{a\left( {th - s} \right)}} dB^{H} (s)ds} = \int_{0}^{h} {e^{as} dB^{H} \left( {th - ds} \right)} $$
(30)

See for example Eq. (8) in the exact discretization of Phillips (1991) and Theorem 1 in Bergstrom (1984). To obtain the exact discrete model for the observed h-period log-price returns \( \int_{{\left( {t - 1} \right)h}}^{th} {r(s)ds} = \) \( \log P(th) - \log P(th - h) \), t = 1, 2, … N, we integrate (28) over ((t-1)h, th) to obtain

$$ \int_{{\left( {t - 1} \right)h}}^{th} {r(s)ds} = e^{ah} \int_{{\left( {t - 2} \right)h}}^{{\left( {t - 1} \right)h}} {r(s)ds} + vh + \kappa_{th} ,\;t = 2,\,3, \ldots N $$
(31)

where \( \kappa_{th} \) is stated in (12) and

$$ K_{1} (r) = \int_{0}^{r} {e^{as} ds} , $$
(32)
$$ K_{2} (r) = \int_{r}^{h} {e^{as} ds} . $$
(33)

The stated formulae (15)–(17) are deduced by (32), (33). In view of Eq. (12), Assumption 2 and the definition

$$ \begin{aligned} \gamma_{k}^{F} (\tau h) & = E\left[ {\int_{0}^{h} {K_{1} \left( r \right)} dB^{H} \left( {th - r} \right) + \int_{0}^{h} {K_{2} \left( r \right)} dB^{H} \left( {th - h - r} \right)} \right] \\ & \times \left[ {\int_{0}^{h} {K_{1} \left( s \right)} dB^{H} \left( {th + \tau h - s} \right) + \int_{0}^{h} {K_{2} \left( s \right)} dB^{H} \left( {th + \tau h - h - s} \right)} \right] \\ \end{aligned} $$

we obtain the auto-covariance function (15).

1.3 Derivation of the Whittle likelihood function

The Whittle approximation of the Gaussian likelihood has been noted by Hannan and Deistler (1988), p. 224) for the estimation of linear systems and by Beran (1994, p. 109) and Giraitis and Robinson (2002, p. 234) for the estimation of long memory models. In the current context under regularity conditions we can write

$$ \frac{1}{N}\log \left| V \right| \to \frac{1}{2\pi }\int_{ - \pi }^{\pi } {\log f_{{\bar{x}}} } (\omega )d\omega \;{\text{as}}\;N \to \infty $$
(34)

where \( V \) and \( f_{{\bar{x}}} (\omega ) \), the covariance matrix and spectral density function respectively of the DGM, are stated in (16) and (20). Moreover, \( \frac{1}{N}\bar{x}'V^{ - 1} \bar{x}\,\left( { = \frac{1}{N}tr\left[ {V^{ - 1} \bar{x}\bar{x}'} \right]} \right) \) can be approximated by the quadratic form \( \frac{1}{N}\bar{x}'S\bar{x}\, \) where \( S\, \) is a \( N \times N \) matrix with the \( \left( {m,n} \right) \) element \( S\left( {m - n} \right) \):

$$ S(j) = \frac{1}{2\pi }\int_{ - \pi }^{\pi } {\frac{{e^{ij\omega } }}{{f_{{\bar{x}}} (\omega )}}} d\omega . $$
(35)

Thus, we can easily deduce that

$$ \frac{1}{N}\bar{x}'S\bar{x}\, = \frac{1}{2\pi }\int_{ - \pi }^{\pi } {\frac{I(\omega )}{{f_{{\bar{x}}} (\omega )}}} d\omega $$
(36)

where \( I(\omega ) \) is the periodogram of the data. The matrix \( S \) can be viewed as an approximation of the inverse of the covariance matrix \( V \). From the above discussion, we easily conclude that the Gaussian likelihood (21) possesses the approximation:

$$ \frac{1}{2\pi }\int_{ - \pi }^{\pi } {\left[ {\log f_{{\bar{x}}} (\omega ) + \frac{I(\omega )}{{f_{{\bar{x}}} (\omega )}}} \right]} d\omega . $$
(36)

Further approximating the above integral with summation, we finally obtain the objective function (27).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simos, T., Tsionas, M. Bayesian inference of the fractional Ornstein–Uhlenbeck process under a flow sampling scheme. Comput Stat 33, 1687–1713 (2018). https://doi.org/10.1007/s00180-018-0799-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-018-0799-6

Keywords

Navigation