Skip to main content
Log in

Preliminary test estimation in system regression models in view of asymmetry

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

In this paper, we consider the system regression model introduced by Arashi and Roozbeh (Comput Stat 30:359–376, 2015) and study the performance of the feasible preliminary test estimator (FPTE) both analytically and computationally, under the assumption that constraints may hold on the vector parameter space. The performance of the FPTE is analysed through a Monte Carlo simulation study under bounded and or asymmetric loss functions. An application of the so-called Cobb–Douglas production function in economic modelling together with the results from the simulation study shows that the bounded linear exponential (BLINEX) loss function outperforms the linear exponential loss function (LINEX) by comparing risk values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Arashi M (2012) Preliminary test and Stein estimators in simultaneous linear equations. Linear Algebra Appl 436:1195–1211

    Article  MathSciNet  MATH  Google Scholar 

  • Arashi M, Roozbeh M (2015) Shrinkage estimation in system regression model. Comput Stat 30:359–376

    Article  MathSciNet  MATH  Google Scholar 

  • Arashi M, Tabatabaey SMM, Hassanzadeh Bashtian M (2014a) Shrinkage ridge estimators in linear regression. Commun Stat Simul Comput 43:871–904

    Article  MathSciNet  MATH  Google Scholar 

  • Arashi M, Kibria BM, Golam NM, Nadarajah S (2014b) Improved preliminary test and Stein-rule Liu estimators for the ill-conditioned elliptical linear regression model. J Multivar Anal 124:53–74

    Article  MathSciNet  MATH  Google Scholar 

  • Baltagi B (1980) On seemingly unrelated regressions with error components. Econometrica 48:1547–1552

    Article  MathSciNet  MATH  Google Scholar 

  • Brown PJ, Payne C (1975) Election night forecasting (with discussion). J R Stat Soc Ser A 138:463–498

    Article  Google Scholar 

  • Casella G, Berger RL (2002) Statistical inference, vol 2. Duxbury Pacific Grove, CA

  • Chib S, Greenberg E (1995) Hierarchical analysis of SUR model with extensions to correlated serial errors and time varying parameter models. J Econom 68:339–360

    Article  MATH  Google Scholar 

  • Coetsee J, Bekker A, Millard S (2014) Preliminary-test and Bayes estimation of a location parameter under BLINEX loss. Commun Stat Theory Methods 43(17):3641–3660

    Article  MathSciNet  MATH  Google Scholar 

  • Fiebig DG (2001) Seemingly unrelated regression. In: Baltagi B (ed) A companion to theoretical econometrics. Blackwell, Hoboken, pp 101–121

    Google Scholar 

  • Geweke J (2005) Contemporary Bayesian econometrics and statistics. Wiley, Hoboken

    Book  MATH  Google Scholar 

  • Giles AJ, Giles DA, Ohtani K (1996) The exact risks of some pre-test and Stein-type regression estimators under balanced loss. Commun Stat Theory Methods 25:2901–2924

    Article  MathSciNet  MATH  Google Scholar 

  • Greene WH (2003) Econometric analysis, 5th edn. Prentice-Hall, Upper Saddle

    Google Scholar 

  • Judge GG, Griffiths WE, Hill RC, Lutkepohl H, Lee TC (1985) The theory and practice of econometrics. Wiley, New York

    MATH  Google Scholar 

  • Kleyn J (2014) The performance of the preliminary test estimator under different loss functions. Ph.D. Dissertation, University of Pretoria, South Africa

  • Kleyn J, Arashi M, Bekker A, Millard S (2017) Preliminary testing of the Cobb–Douglas production function and related inferential issues. Commun Stat Simul Comput 46:469–488

    Article  MathSciNet  MATH  Google Scholar 

  • Lahiri SN (2003) Resampling methods for dependent data, Springer Series in Statistics. Springer, Berlin

    Book  Google Scholar 

  • Meng X, Rubin DB (1996) Efficient methods for estimation and testing with seemingly unrelated regressions in the presence of latent variables and missing observations. In: Berry DA, Chaloner KM, Geweke J (eds) Bayesian analysis in statistics and econometrics: essays in honor of Arnold Zellner. Wiley, New York, pp 215–227

    Google Scholar 

  • Moon HR (1999) A note on fully-modified estimation ofseemingly unrelated regressions models with integrated regressors. Econ Lett 65:2531

    Article  Google Scholar 

  • Moon HR, Perron P (2004) Efficient estimation of SURcointegration regression model and testing for purchasing power parity. Econom Rev 23:293–323

    Article  MATH  Google Scholar 

  • Muniz G, Kibria BMG (2009) On some ridge regression estimators: an empirical comparisons. Commun Stat Simul Comput 38:621–630

    Article  MathSciNet  MATH  Google Scholar 

  • Percy DF (1996) Zellner’s influence on multivariate linear models. In: Berry DA, Chaloner KM, Geweke J (eds) Bayesian analysis in statistics and econometrics: essays in honor of Arnold Zellner. Wiley, New York, pp 203–213

    Google Scholar 

  • Quintana JM, Putnam BH, Wilford DS (1998) Mutual and pension funds management: beating the markets using a global Bayesian investment strategy, published in 1996 joint Sect. On Bayesian Statistical Science, American Statistical Association. (www.amstat.org), and International Society for Bayesian Analysis (www.bayesian.org) Proceedings Volume and presented at ISBA Meeting in Istanbul, Turkey, 1995

  • Raheem SME, Ahmed SE (2011) Positive-shrinkage and pretest estimation in multiple regression: a Monte Carlo study with applications. J Iran Stat Soc 10:267–298

    MathSciNet  MATH  Google Scholar 

  • Roozbeh M, Arashi M (2013) Feasible ridge estimators in partially linear models. J Multivar Anal 116:35–44

    Article  MathSciNet  MATH  Google Scholar 

  • Roozbeh M, Arashi M, Gasparini M (2012) Seemingly unrelated ridge regression in Semiparametric Models. Commun Stat Theory Methods 41:1364–1386

    Article  MathSciNet  MATH  Google Scholar 

  • Rossi PE, Allenby GM, McCulloch R (2005) Bayesian statistics and marketing. Wiley, Hoboken

    Book  MATH  Google Scholar 

  • Saleh AKME, Kibria BMG (1993) Performance of some new preliminary test ridge regression estimators and their properties. Commun Stat Theory Methods 22:2747–2764

    Article  MathSciNet  MATH  Google Scholar 

  • Srivastava VK, Giles DEA (1987) Seemingly unrelated regression equation models. Marcel Dekker, New York

    MATH  Google Scholar 

  • Saleh AKME (2006) Theory of preliminary test and Stein-type estimation with applications. Wiley, New York

    Book  MATH  Google Scholar 

  • Srivastava VK, Maekawa K (1995) Efficiency properties of feasible generalized least squares estimators in SURE models under non-normal disturbances. J Econom 66:99–121

    Article  MathSciNet  MATH  Google Scholar 

  • Tabatabaey SMM, Saleh AKME, Kibria BMG (2004) Simultaneous estimation of regression parameters with spherically symmetric errors under possible stochastic constraints. Int J Stat Sci 3:1–20

    Google Scholar 

  • Theil H (1971) Principles of econometrics. Wiley, New York

    MATH  Google Scholar 

  • Wen D, Levy S (2001) BLINEX: a bounded asymmetric loss function with application to Bayesian estimation. Commun Stat Theory Methods 30(1):147–153

    Article  MathSciNet  MATH  Google Scholar 

  • Zellner A (1962) An efficient method of estimating seemingly unrelated regressions and tests for aggregation bias. J Am Stat Assoc 57:348–368

    Article  MathSciNet  MATH  Google Scholar 

  • Zellner A (1963) Estimators for seemingly unrelated regressions: some exact finite sample results. J Am Stat Assoc 58:977–992; corrigendum, (1972), 67, 255

  • Zellner A, Huang DS (1962) Further properties of efficient estimators for seemingly unrelated regression equations. Int Econ Rev 3:300–313

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the co-editor and referee for their valuable comments which significantly improved the standard of the paper. This work is based on the research supported in part by the National Research Foundation of South Africa for the Grant TTK1206151317. M. Arashi’s research is supported in part by the National Research Foundation of South Africa (Ref. CPRR160403161466 Grant No. 105840). Any opinion, finding and conclusion or recommendation expressed in this material is that of the author(s) and the NRF does not accept any liability in this regard.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Kleyn.

Electronic supplementary material

Appendix: Proofs for theorems 1 and 2

Appendix: Proofs for theorems 1 and 2

Theorem 1 Proof. The risk function for \(\widetilde{\pmb {\beta }} _{N}^{F}\) under BLINEX loss is defined as:

$$\begin{aligned} \mathfrak {R}_\textit{BLINEX}\left( \widetilde{\pmb {\beta }}_{N}^{F},\pmb {\beta } \right)= & {} E\left[ \L _\textit{BLINEX}\left( \widetilde{\pmb {\beta }} _{N}^{F},\pmb {\beta }\right) \right] \\= & {} \frac{1}{\lambda }E\left[ 1-\frac{1}{1+b\left[ \exp \left( \mathbf {a} ^{\prime }\left( \widetilde{\pmb {\beta }}_{N}^{F}-\pmb {\beta }\right) \right) -\mathbf {a}^{\prime }\left( \widetilde{\pmb {\beta }}_{N}^{F}- \pmb {\beta }\right) -1\right] }\right] \end{aligned}$$

By applying the binomial expansion \(\left( 1-M\right) ^{-1}=1+M+M^{2}+O\left( M^{3}\right) \)

where

$$\begin{aligned} M=b\left[ \mathbf {a}^{\prime }\left( \widetilde{\pmb {\beta }}_{N}^{F}- \pmb {\beta }\right) -\exp \left( \mathbf {a}^{\prime }\left( \widetilde{ \pmb {\beta }}_{N}^{F}-\pmb {\beta }\right) \right) +1\right] \end{aligned}$$

The risk function reduces to

$$\begin{aligned} E\left[ \L _\textit{BLINEX}\left( \widetilde{\pmb {\beta }}_{N}^{F}, \pmb {\beta }\right) \right]= & {} \frac{1}{\lambda }E\left[ 1-\left( 1+M+M^{2}+{\ldots }\right) \right] \\= & {} -\frac{1}{\lambda }E\left[ M+M^{2}+{\ldots }\right] \\= & {} -\frac{1}{\lambda }\left[ E\left[ M\right] +E\left[ M^{2}\right] \right] +{\ldots } \end{aligned}$$

Firstly we consider \(E\left[ M\right] =bE\left[ \mathbf {a}^{\prime }\left( \widetilde{\pmb {\beta }}_{N}^{F}-\pmb {\beta }\right) -\exp \left( \mathbf {a}^{\prime }\left( \widetilde{\pmb {\beta }}_{N}^{F}- \pmb {\beta }\right) \right) +1\right] \) and obtain

$$\begin{aligned} E\left[ M\right]= & {} bE\left[ \mathbf {a}^{\prime }\left( \widetilde{ \pmb {\beta }}_{N}^{F}-\pmb {\beta }\right) \right] -bE\left[ \exp \left( \mathbf {a}^{\prime }\left( \widetilde{\pmb {\beta }}_{N}^{F}- \pmb {\beta }\right) \right) \right] +b\\ E\left[ M\right]= & {} bE\left[ \mathbf {a}^{\prime }\left( \widetilde{ \pmb {\beta }}_{N}^{F}-\pmb {\beta }\right) \right] -b\exp \left( - \pmb {\beta }^{\prime }\mathbf {a}\right) E\left[ \exp \left( \mathbf {a} ^{\prime }\widetilde{\pmb {\beta }}_{N}^{F}\right) \right] +b \end{aligned}$$

Since \(\widetilde{\pmb {\beta }}_{N}^{F}\) has is asymptotically normally distributed, i.e. \(\widetilde{\pmb {\beta }}_{N}^{F}\sim N\left( {{\varvec{\beta }} ,{\varvec{\Sigma }} }_{\tilde{\pmb {\beta }}_{N}^{F}}\right) \) we evaluate the expectation in the limit as \(N\rightarrow \infty .\)

$$\begin{aligned} \underset{N\rightarrow \infty }{\lim }E\left( M\right)= & {} b\mathbf {a }^{\prime }\mathbf {0-}b\exp \left( -\pmb {\beta }^{\prime }\mathbf {a} \right) \exp \left( \pmb {\beta }^{\prime }\mathbf {a+}\frac{1}{2}\mathbf {a} ^{\prime }{\varvec{\Sigma }}_{\tilde{\pmb {\beta }}_{N}^{F}}\mathbf {a} \right) +b\nonumber \\ \underset{N\rightarrow \infty }{\lim }E\left( M\right)= & {} -b\left( \exp \left( \frac{1}{2}\mathbf {a}^{\prime }{\varvec{\Sigma }}_{\tilde{{{\varvec{\beta }}}}_{N}^{F}}\mathbf {a}\right) -1\right) \end{aligned}$$
(11)

since \(E\left[ \exp \left( \mathbf {a}^{\prime }\widetilde{{\varvec{{\beta }} }}_{N}^{F}\right) \right] \) is the moment-generating function of the normal distribution.

Secondly we consider the calculation of \(E\left( M^{2}\right) \)

$$\begin{aligned}&=b^{2}E\left[ \left( \widetilde{\pmb {\beta }}_{N}^{F}-{\varvec{{\beta }}}\right) ^{\prime }\mathbf {aa}^{\prime }\left( \widetilde{{\varvec{{\beta }} }}_{N}^{F}-\pmb {\beta }\right) \right] \end{aligned}$$
(12)
$$\begin{aligned}&\quad +\,2b^{2}E\left[ \left( \widetilde{\pmb {\beta }}_{N}^{F}-{\varvec{{ \beta }}}\right) ^{\prime }\right] \mathbf {a} \end{aligned}$$
(13)
$$\begin{aligned}&\quad +\,b^{2}E\left[ \exp \left[ 2\mathbf {a}^{\prime }\left( \widetilde{ \pmb {\beta }}_{N}^{F}-\pmb {\beta }\right) \right] \right] \end{aligned}$$
(14)
$$\begin{aligned}&\quad -\,2b^{2}E\left[ \mathbf {a}^{\prime }\left( \widetilde{{\varvec{{\beta }} }}_{N}^{F}-\pmb {\beta }\right) {\exp }\left[ \mathbf {a} ^{\prime }\left( \widetilde{\pmb {\beta }}_{N}^{F}-\pmb {\beta }\right) \right] \right] \end{aligned}$$
(15)
$$\begin{aligned}&\quad -\,2b^{2}E\left[ \exp \left[ \mathbf {a}^{\prime }\left( \widetilde{ \pmb {\beta }}_{N}^{F}-\pmb {\beta }\right) \right] \right] +b^{2} \end{aligned}$$
(16)

As in the previous simplification of \(E\left( M\right) \) we evaluate each of these expectations in the limit as \(N\rightarrow \infty .\)

Expression (12):

$$\begin{aligned}&b^{2}E\left[ \left( \widetilde{\pmb {\beta }}_{N}^{F}-{\varvec{{\beta }}}\right) ^{\prime }\mathbf {aa}^{\prime }\left( \widetilde{{\varvec{{\beta }}}}_{N}^{F}-\pmb {\beta }\right) \right] =b^{2}\mathbf {a}^{\prime }E \left[ \left( \widetilde{\pmb {\beta }}_{N}^{F}-\pmb {\beta }\right) \left( \widetilde{\pmb {\beta }}_{N}^{F}-\pmb {\beta }\right) ^{\prime } \right] \mathbf {a}\\&\quad =b^{2}\mathbf {a}^{\prime }\underset{N\rightarrow \infty }{\lim }E \left[ \left( \widetilde{\pmb {\beta }}_{N}^{F}-\pmb {\beta }\right) \left( \widetilde{\pmb {\beta }}_{N}^{F}-\pmb {\beta }\right) ^{\prime } \right] \mathbf {a}\\&\quad =b^{2}\mathbf {a}^{\prime }{\varvec{\Sigma }}_{\tilde{\pmb {\beta } }_{N}^{F}}\mathbf {a} \end{aligned}$$

Expression  (13):

$$\begin{aligned} 2b^{2}E\left[ \left( \widetilde{\pmb {\beta }}_{N}^{F}-{{\varvec{\beta }} }\right) ^{\prime }\mathbf {a}\right] =\,2b^{2}\underset{N\rightarrow \infty }{\lim }E\left[ \left( \widetilde{\pmb {\beta }}_{N}^{F}-{\varvec{{\beta }}}\right) ^{\prime }\right] \mathbf {a=}\,2b^{2}\mathbf {0}^{\prime } \mathbf {a=}\,0 \end{aligned}$$

Expression (14):

$$\begin{aligned}&b^{2}E\left[ \exp \left[ 2\mathbf {a}^{\prime }\left( \widetilde{ \pmb {\beta }}_{N}^{F}-\pmb {\beta }\right) \right] \right] =b^{2}\exp \left( -2\mathbf {a}^{\prime }\pmb {\beta }\right) \underset{N\rightarrow \infty }{\lim }E\left[ \exp \left( 2\mathbf {a}^{\prime }\widetilde{{\varvec{{\beta }} }}_{N}^{F}\right) \right] \\&\quad =b^{2}\exp \left( -2\pmb {\beta }^{\prime }\mathbf {a}\right) \exp \left( 2\pmb {\beta }^{\prime }\mathbf {a+}2\mathbf {a}^{\prime } {\varvec{\Sigma }}_{\tilde{\pmb {\beta }}_{N}^{F}}\mathbf {a}\right) =b^{2}\exp \left[ 2\mathbf {a}^{\prime }{\varvec{\Sigma }}_{\tilde{{{\varvec{\beta }} }}_{N}^{F}}\mathbf {a}\right] \end{aligned}$$

Expression (15):

By defining \(\underset{N\rightarrow \infty }{\lim }M_{\left( \widetilde{\pmb {\beta }}_{N}^{F}-\pmb {\beta }\right) }\left( \mathbf {a} \right) =\exp \left( \mathbf {a}^{\prime }\mathbf {0}+\frac{1}{2}\mathbf {a} ^{\prime }{\varvec{\Sigma }}_{\tilde{\pmb {\beta }}_{N}^{F}}\mathbf {a} \right) \) and making use of Casella and Berger (2002, p62)

$$\begin{aligned}&-2b^{2}\mathbf {a}^{\prime }\underset{N\rightarrow \infty }{\lim }E \left[ \left( \widetilde{\pmb {\beta }}_{N}^{F}-\pmb {\beta }\right) {\exp }\left[ \mathbf {a}^{\prime }\left( \widetilde{\pmb {\beta }} _{N}^{F}-\pmb {\beta }\right) \right] \right] \\&\quad =-2b^{2}\mathbf {a}^{\prime }\underset{N\rightarrow \infty }{\lim } \frac{\partial }{\partial \mathbf {a}}M_{\left( \widetilde{\pmb {\beta }} _{N}^{F}-\pmb {\beta }\right) }\left( \mathbf {a}\right) \\&\quad =-2b^{2}\mathbf {a}^{\prime }\frac{\partial }{\partial \mathbf {a}} \left( \exp \left( \mathbf {0}^{\prime }\mathbf {a}+\frac{1}{2}\mathbf {a} ^{\prime }{\varvec{\Sigma }}_{\tilde{\pmb {\beta }}_{N}^{F}}\mathbf {a} \right) \right) \\&\quad =-2b^{2}\left( \mathbf {a}^{\prime }{\varvec{\Sigma }}_{\tilde{ \pmb {\beta }}_{N}^{F}}\mathbf {a}\right) \exp \left( \frac{1}{2}\mathbf {a} ^{\prime }{\varvec{\Sigma }}_{\tilde{\pmb {\beta }}_{N}^{F}}\mathbf {a} \right) \end{aligned}$$

Expression (16):

$$\begin{aligned}&-2b^{2}\underset{N\rightarrow \infty }{\lim }E\left[ \exp \left[ \mathbf {a}^{\prime }\left( \widetilde{\pmb {\beta }}_{N}^{F}-{{\varvec{\beta }} }\right) \right] \right] +b^{2}\\&\quad =-2b^{2}\exp \left( -\mathbf {a}^{\prime } \pmb {\beta }\right) \underset{N\rightarrow \infty }{\lim }E\left[ \exp \left( \mathbf {a}^{\prime }\widetilde{\pmb {\beta }}_{N}^{F}\right) \right] +b^{2}\\&\quad =-2b^{2}\exp \left( \frac{1}{2}\mathbf {a}^{\prime }{\varvec{\Sigma }}_{\tilde{\pmb {\beta }}_{N}^{F}}\mathbf {a}\right) +b^{2} \end{aligned}$$

Combining expressions (12)–(16) we obtain an result for \(\underset{N\rightarrow \infty }{\lim }E\left( M^{2}\right) \) given by

$$\begin{aligned}&\underset{N\rightarrow \infty }{\lim }E\left( M^{2}\right) =b^{2} \mathbf {a}^{\prime }{\varvec{\Sigma }}_{\tilde{\pmb {\beta }}_{N}^{F}} \mathbf {a+}b^{2}\exp \left[ 2\mathbf {a}^{\prime }{\varvec{\Sigma }}_{\tilde{ \pmb {\beta }}_{N}^{F}}\mathbf {a}\right] -2b^{2}\left( \mathbf {a}^{\prime } {\varvec{\Sigma }}_{\tilde{\pmb {\beta }}_{N}^{F}}\mathbf {a}\right) \exp \left( \frac{1}{2}\mathbf {a}^{\prime }{\varvec{\Sigma }}_{\tilde{{\varvec{{\beta }} }}_{N}^{F}}\mathbf {a}\right) \nonumber \\&\quad -2b^{2}\exp \left( \frac{1}{2}\mathbf {a} ^{\prime }{\varvec{\Sigma }}_{\tilde{\pmb {\beta }}_{N}^{F}}\mathbf {a} \right) +b^{2} \end{aligned}$$
(17)

Combining the final expressions of (11) and (17 ) completes the proof.

Theorem 2 Proof

In order to proof this theorem we need to show the following result:

From (8) we have

$$\begin{aligned} \hat{\pmb {\beta }}_{N}^\textit{FPT}= & {} \tilde{\pmb {\beta }}_{N}^{F}-\left( \tilde{\pmb {\beta }}_{N}^{F}-\pmb {\beta }_{0}\right) I_{NR}\left( F\right) \nonumber \\ \hat{\pmb {\beta }}_{N}^\textit{FPT}-\pmb {\beta }= & {} \left( \tilde{{\varvec{{\beta }} }}_{N}^{F}-\pmb {\beta }\right) -\tilde{\pmb {\beta }} _{N}^{F}I_{NR}\left( F\right) +\pmb {\beta }_{0}I_{NR}\left( F\right) \nonumber \\= & {} \left( \tilde{\pmb {\beta }}_{N}^{F}-\pmb {\beta }\right) -\left( \tilde{\pmb {\beta }}_{N}^{F}-\pmb {\beta }\right) I_{NR}\left( F\right) +\left( \pmb {\beta }_{0}-\pmb {\beta }\right) I_{NR}\left( F\right) \end{aligned}$$
(18)

Proof

The risk function reduces to

$$\begin{aligned} E\left[ \L _\textit{BLINEX}\left( \hat{\pmb {\beta }}_{N}^\textit{FPT},{\varvec{{\beta }}}\right) \right]= & {} \frac{1}{\lambda }E\left[ 1-\left( 1+M+M^{2}+{\ldots }\right) \right] \nonumber \\= & {} -\frac{1}{\lambda }E\left[ M+M^{2}+{\ldots }\right] \nonumber \\= & {} -\frac{1}{\lambda }\left[ E\left[ M\right] +E\left[ M^{2}\right] \right] +{\ldots } \end{aligned}$$
(19)

Firstly considering \(E\left( M\right) \) we have

$$\begin{aligned} E\left( M\right)= & {} -bE\left[ \exp \left( \mathbf {a}^{\prime }\left( \hat{\pmb {\beta }}_{N}^\textit{FPT}-\pmb {\beta }\right) \right) - \mathbf {a}^{\prime }\left( \hat{\pmb {\beta }}_{N}^\textit{FPT}-\pmb {\beta } \right) -1\right] \\= & {} -\frac{b}{2}E\left[ \left( \mathbf {a}^{\prime }\left( \hat{\pmb {\beta }}_{N}^\textit{FPT}-\pmb {\beta }\right) \right) ^{2}\right] \end{aligned}$$

Considering \(E\left[ \left( \mathbf {a}^{\prime }\left( \hat{ \pmb {\beta }}_{N}^\textit{FPT}-\pmb {\beta }\right) \right) ^{2}\right] \) reduces to

$$\begin{aligned}&E\left[ \left( \mathbf {a}^{\prime }\left( \hat{\pmb {\beta }} _{N}^\textit{FPT}-\pmb {\beta }\right) \right) ^{\prime }\left( \mathbf {a} ^{\prime }\left( \hat{\pmb {\beta }}_{N}^\textit{FPT}-\pmb {\beta }\right) \right) \right] =\mathbf {a}^{\prime }E\left[ \left( \hat{\pmb {\beta }} _{N}^\textit{FPT}-\pmb {\beta }\right) \left( \hat{\pmb {\beta }}_{N}^\textit{FPT}- \pmb {\beta }\right) ^{\prime }\right] \mathbf {a}\\&\quad =\mathbf {a}^{\prime }E\left[ \left( \hat{\pmb {\beta }}_{N}^{F}- \pmb {\beta }\right) \left( \widetilde{\pmb {\beta }}_{N}^{F}-{\varvec{{\beta }}}\right) ^{\prime }-I_{NR}\left( F\right) \left( \widetilde{{{\varvec{\beta }} }}_{N}^{F}-\pmb {\beta }\right) \left( \widetilde{\pmb {\beta }} _{N}^{F}-\pmb {\beta }\right) ^{\prime }\right. \\&\qquad \left. +\,I_{NR}\left( F\right) \left( \pmb {\beta }_{0}-\pmb {\beta }\right) \left( \pmb {\beta }_{0}- \pmb {\beta }\right) ^{\prime }\right] \mathbf {a} \end{aligned}$$

Examining this expression in the limit as \(N\rightarrow \infty \) we obtain an expression for \(E\left( M\right) \):

$$\begin{aligned}&=\frac{-b}{2}\mathbf {a}^{\prime }\underset{N\rightarrow \infty }{ \lim }E\left[ \left( \widetilde{\pmb {\beta }}_{N}^{F}-\pmb {\beta } \right) \left( \widetilde{\pmb {\beta }}_{N}^{F}-\pmb {\beta }\right) ^{\prime }-I_{NR}\left( F\right) \left( \widetilde{\pmb {\beta }}_{N}^{F}\right. \right. \nonumber \\&\quad \left. \left. -\, \pmb {\beta }\right) \left( \widetilde{\pmb {\beta }}_{N}^{F}-{\varvec{{\beta }}}\right) ^{\prime }+I_{NR}\left( F\right) \left( \pmb {\beta }_{0}- \pmb {\beta }\right) \left( \pmb {\beta }_{0}-\pmb {\beta }\right) ^{\prime }\right] \mathbf {a}\nonumber \\&\quad \underset{N\rightarrow \infty }{\lim }E\left( M\right) =\frac{-b}{ 2}\left( \mathbf {a}^{\prime }{\varvec{\Sigma }}_{\tilde{\pmb {\beta }} _{N}^{F}}\mathbf {a}-\mathbf {a}^{\prime }{\varvec{\Sigma }}_{\tilde{{\varvec{{\beta }} }}_{N}^{F}}\mathbf {a}E\left[ \varphi \left( \chi _{p+2,\frac{\varDelta ^{2}}{2}}^{2}\right) \right] \right. \nonumber \\&\quad \left. +\,\mathbf {a}^{\prime }{\varvec{\Sigma }}_{{\varvec{{\beta }} }_{0}}\mathbf {a}E\left[ \varphi \left( \chi _{p+2,\frac{\varDelta ^{2}}{2} }^{2}\right) \right] \right) \end{aligned}$$
(20)

Secondly, considering \(E\left( M^{2}\right) \) we obtain

$$\begin{aligned} E\left( M^{2}\right)= & {} b^{2}E\left[ \left( \mathbf {a}^{\prime }\left( \hat{\pmb {\beta }}_{N}^\textit{FPT}-\pmb {\beta }\right) -\exp \left( \mathbf {a}^{\prime }\left( \hat{\pmb {\beta }}_{N}^\textit{FPT}-\pmb {\beta } \right) \right) +1\right) ^{\prime }\left( \mathbf {a}^{\prime }\left( \hat{ \pmb {\beta }}_{N}^\textit{FPT}-\pmb {\beta }\right) \right. \right. \nonumber \\&\quad \left. \left. -\exp \left( \mathbf {a} ^{\prime }\left( \hat{\pmb {\beta }}_{N}^\textit{FPT}-\pmb {\beta }\right) \right) +1\right) \right] \nonumber \\= & {} b^{2}E\left[ \left( \hat{\pmb {\beta }}_{N}^\textit{FPT}-{\varvec{{\beta }}}\right) ^{\prime }\mathbf {aa}^{\prime }\left( \hat{\pmb {\beta }} _{N}^\textit{FPT}-\pmb {\beta }\right) \right] \end{aligned}$$
(21)
$$\begin{aligned}&+\,2b^{2}E\left[ \mathbf {a}^{\prime }\left( \hat{\pmb {\beta }} _{N}^\textit{FPT}-\pmb {\beta }\right) \right] \end{aligned}$$
(22)
$$\begin{aligned}&+\,b^{2}E\left[ \exp \left( 2\mathbf {a}^{\prime }\left( \hat{ \pmb {\beta }}_{N}^\textit{FPT}-\pmb {\beta }\right) \right) \right] \end{aligned}$$
(23)
$$\begin{aligned}&-\,2b^{2}E\left[ \mathbf {a}^{\prime }\left( \hat{\pmb {\beta }} _{N}^\textit{FPT}-\pmb {\beta }\right) \exp \left( \mathbf {a}^{\prime }\left( \hat{\pmb {\beta }}_{N}^\textit{FPT}-\pmb {\beta }\right) \right) \right] \end{aligned}$$
(24)
$$\begin{aligned}&-\,2b^{2}E\left[ \exp \left( \mathbf {a}^{\prime }\left( \hat{ \pmb {\beta }}_{N}^\textit{FPT}-\pmb {\beta }\right) \right) \right] +b^{2} \end{aligned}$$
(25)

Each one of these expectations will again be evaluated in the limit as \(N\rightarrow \infty .\)

Expression (21):

As in the case of expression (20) we obtain:

$$\begin{aligned}&b^{2}E\left[ \left( \hat{\pmb {\beta }}_{N}^\textit{FPT}-{{\varvec{\beta }} }\right) ^{\prime }\mathbf {aa}^{\prime }\left( \hat{\pmb {\beta }} _{N}^\textit{FPT}-\pmb {\beta }\right) \right] =b^{2}\left[ \mathbf {a}^{\prime } {\varvec{\Sigma }}_{\tilde{\pmb {\beta }}_{N}^{F}}\mathbf {a}-\mathbf {a} ^{\prime }{\varvec{\Sigma }}_{\tilde{\pmb {\beta }}_{N}^{F}}\mathbf {a}E\left[ \varphi \left( \chi _{p+2,\frac{\varDelta ^{2}}{2}}^{2}\right) \right] \right. \\&\quad \left. +\,\mathbf { a}^{\prime }{\varvec{\Sigma }}_{\pmb {\beta }_{0}}\mathbf {a}E\left[ \varphi \left( \chi _{p+2,\frac{\varDelta ^{2}}{2}}^{2}\right) \right] \right] \end{aligned}$$

Expression (22):

$$\begin{aligned}&2b^{2}E\left[ \mathbf {a}^{\prime }\left( \hat{\pmb {\beta }} _{N}^\textit{FPT}-\pmb {\beta }\right) \right] =2b^{2}E\left[ \mathbf {a}^{\prime }\left( \left( \tilde{\pmb {\beta }}_{N}^{F}-\pmb {\beta }\right) -\left( \tilde{\pmb {\beta }}_{N}^{F}-\pmb {\beta }\right) I_{NR}\left( F\right) \right. \right. \\&\qquad \left. \left. +\,\left( \pmb {\beta }_{0}-\pmb {\beta }\right) I_{NR}\left( F\right) \right) \right] \\&\quad =2b^{2}\mathbf {a}^{\prime }E\left[ \left( \tilde{\pmb {\beta }} _{N}^{F}-\pmb {\beta }\right) \right] -2b^{2}\mathbf {a}^{\prime }E\left[ \left( \tilde{\pmb {\beta }}_{N}^{F}-\pmb {\beta }\right) I_{NR}\left( F\right) \right] \\&\qquad +\,2b^{2}\mathbf {a}^{\prime }E\left[ \left( \pmb {\beta } _{0}-\pmb {\beta }\right) I_{NR}\left( F\right) \right] \end{aligned}$$

By evaluating all these expectations in the limit as \(N\rightarrow \infty \) and making use of Judge and Bock,1978, p321 we obtain

$$\begin{aligned} 2b^{2}\mathbf {a}^{\prime }\mathbf {0-}2b^{2}\mathbf {a}^{\prime } \mathbf {0}E\left[ \varphi \left( \chi _{p+2}^{2},\frac{\varDelta ^{2}}{2} \right) \right] +2b^{2}\mathbf {a}^{\prime }\mathbf {0}E\left[ \varphi \left( \chi _{p+2}^{2},\frac{\varDelta ^{2}}{2}\right) \right] =0 \end{aligned}$$

Expression (23):

$$\begin{aligned}&b^{2}E\left[ \exp \left( 2\mathbf {a}^{\prime }\left( \hat{{\varvec{{\beta }}}}_{N}^\textit{FPT}-\pmb {\beta }\right) \right) \right] =b^{2}E\left[ 1+2 \mathbf {a}^{\prime }\left( \hat{\pmb {\beta }}_{N}^\textit{FPT}-\pmb {\beta } \right) \right. \\&\quad \left. +\frac{1}{2!}\left( 2\mathbf {a}^{\prime }\left( \hat{\pmb {\beta }} _{N}^\textit{FPT}-\pmb {\beta }\right) \right) ^{2}+O\left( x^{3}\right) \right] \\&\approx b^{2}\left[ 1+2\mathbf {a}^{\prime }E\left( \hat{{\varvec{{\beta }} }}_{N}^\textit{FPT}-\pmb {\beta }\right) +2\mathbf {a}^{\prime }E\left[ \left( \hat{\pmb {\beta }}_{N}^\textit{FPT}-\pmb {\beta }\right) \left( \hat{ \pmb {\beta }}_{N}^\textit{FPT}-\pmb {\beta }\right) ^{\prime }\right] \mathbf {a }\right] \end{aligned}$$

From expression (22) we know that \(E\left( \hat{{\varvec{{\beta }}}}_{N}^\textit{FPT}-\pmb {\beta }\right) \) reduces to zero in the limit as \( N\rightarrow \infty \) therefore we obtain

$$\begin{aligned}&b^{2}+2b^{2}\mathbf {a}^{\prime }E\left[ \left( \hat{{\varvec{{\beta }}}}_{N}^\textit{FPT}-\pmb {\beta }\right) \left( \hat{\pmb {\beta }}_{N}^\textit{FPT}- \pmb {\beta }\right) ^{\prime }\right] \mathbf {a}\\&\quad =b^{2}+2b^{2}\left( \mathbf {a}^{\prime }{\varvec{\Sigma }}_{\tilde{ \pmb {\beta }}_{N}^{F}}\mathbf {a}-\mathbf {a}^{\prime }{\varvec{\Sigma }}_{ \tilde{\pmb {\beta }}_{N}^{F}}\mathbf {a}E\left[ \varphi \left( \chi _{p+2, \frac{\varDelta ^{2}}{2}}^{2}\right) \right] +\mathbf {a}^{\prime }{\varvec{{\Sigma }}}_{\pmb {\beta }_{0}}\mathbf {a}E\left[ \varphi \left( \chi _{p+2, \frac{\varDelta ^{2}}{2}}^{2}\right) \right] \right) \end{aligned}$$

Expression (24):

$$\begin{aligned}&-2b^{2}E\left[ \mathbf {a}^{\prime }\left( \hat{\pmb {\beta }} _{N}^\textit{FPT}-\pmb {\beta }\right) \exp \left( \mathbf {a}^{\prime }\left( \hat{\pmb {\beta }}_{N}^\textit{FPT}-\pmb {\beta }\right) \right) \right] \\&\quad =-2b^{2}E\left[ \mathbf {a}^{\prime }\left( \hat{\pmb {\beta }} _{N}^\textit{FPT}-\pmb {\beta }\right) \left( 1+\mathbf {a}^{\prime }\left( \hat{ \pmb {\beta }}_{N}^\textit{FPT}-\pmb {\beta }\right) \right. \right. \\&\qquad \left. \left. +\,\frac{1}{2!}\left( \mathbf {a}^{\prime }\left( \hat{\pmb {\beta }}_{N}^\textit{FPT}-\pmb {\beta } \right) \right) ^{2}+O\left( x^{3}\right) \right) \right] \\&\quad \approx -\,2b^{2}E\left[ \mathbf {a}^{\prime }\left( \hat{{\varvec{{\beta }}}}_{N}^\textit{FPT}-\pmb {\beta }\right) \right] \\&\qquad -\,2b^{2}\mathbf {a}^{\prime }E\left[ \left( \hat{\pmb {\beta }}_{N}^\textit{FPT}-\pmb {\beta }\right) \left( \hat{\pmb {\beta }}_{N}^\textit{FPT}-\pmb {\beta }\right) ^{\prime } \right] \mathbf {a-}b^{2}E\left[ \left( \mathbf {a}^{\prime }\left( \hat{ \pmb {\beta }}_{N}^\textit{FPT}-\pmb {\beta }\right) \right) ^{3}\right] \end{aligned}$$

By making use of the results in expression (21) and (22) we obtain

$$\begin{aligned}&-2b^{2}\left( \mathbf {a}^{\prime }{\varvec{\Sigma }}_{\tilde{ \pmb {\beta }}_{N}^{F}}\mathbf {a}-\mathbf {a}^{\prime }{\varvec{\Sigma }}_{ \tilde{\pmb {\beta }}_{N}^{F}}\mathbf {a}E\left[ \varphi \left( \chi _{p+2, \frac{\varDelta ^{2}}{2}}^{2}\right) \right] +\mathbf {a}^{\prime }{\varvec{{\Sigma }}}_{\pmb {\beta }_{0}}\mathbf {a}E\left[ \varphi \left( \chi _{p+2, \frac{\varDelta ^{2}}{2}}^{2}\right) \right] \right) \\&\quad -b^{2}E\left[ \left( \mathbf {a}^{\prime }\left( \hat{\pmb {\beta }}_{N}^\textit{FPT}-\pmb {\beta } \right) \right) ^{3}\right] \end{aligned}$$

Using the Stein identity, Saleh (2006, p. 3) and Kleyn (2014) we find that \(E\left[ \left( \mathbf {a}^{\prime }\left( \hat{\pmb {\beta }} _{N}^\textit{FPT}-\pmb {\beta }\right) \right) ^{3}\right] =0\) therefore expression (24) reduces to

$$\begin{aligned} -2b^{2}\left( \mathbf {a}^{\prime }{\varvec{\Sigma }}_{\tilde{ \pmb {\beta }}_{N}^{F}}\mathbf {a}-\mathbf {a}^{\prime }{\varvec{\Sigma }}_{ \tilde{\pmb {\beta }}_{N}^{F}}\mathbf {a}E\left[ \varphi \left( \chi _{p+2, \frac{\varDelta ^{2}}{2}}^{2}\right) \right] +\mathbf {a}^{\prime }{\varvec{{\Sigma }} }_{\pmb {\beta }_{0}}\mathbf {a}E\left[ \varphi \left( \chi _{p+2, \frac{\varDelta ^{2}}{2}}^{2}\right) \right] \right) \end{aligned}$$

Expression (25):

$$\begin{aligned}&-2b^{2}E\left[ \exp \left( \mathbf {a}^{\prime }\left( \hat{ \pmb {\beta }}_{N}^\textit{FPT}-\pmb {\beta }\right) \right) \right] +b^{2}\\&\quad =-2b^{2}E\left[ 1+\mathbf {a}^{\prime }\left( \hat{\pmb {\beta }} _{N}^\textit{FPT}-\pmb {\beta }\right) +\frac{1}{2!}\left( \mathbf {a}^{\prime }\left( \hat{\pmb {\beta }}_{N}^\textit{FPT}-\pmb {\beta }\right) \right) ^{2}+O\left( x^{3}\right) \right] +b^{2}\\&\quad \approx -2b^{2}-2b^{2}\mathbf {a}^{\prime }E\left( \hat{{\varvec{{\beta }}}}_{N}^\textit{FPT}-\pmb {\beta }\right) -b^{2}\mathbf {a}^{\prime }E\left[ \left( \hat{\pmb {\beta }}_{N}^\textit{FPT}-\pmb {\beta }\right) \left( \hat{ \pmb {\beta }}_{N}^\textit{FPT}-\pmb {\beta }\right) ^{\prime }\right] \mathbf { a+}b^{2}\\&\quad =-2b^{2}-2b^{2}\mathbf {a}^{\prime }\mathbf {0-}b^{2}\left( \mathbf { a}^{\prime }{\varvec{\Sigma }}_{\tilde{\pmb {\beta }}_{N}^{F}}\mathbf {a}- \mathbf {a}^{\prime }{\varvec{\Sigma }}_{\tilde{\pmb {\beta }}_{N}^{F}} \mathbf {a}E\left[ \varphi \left( \chi _{p+2,\frac{\varDelta ^{2}}{2} }^{2}\right) \right] \right. \\&\qquad \left. +\,\mathbf {a}^{\prime }{\varvec{\Sigma }}_{\pmb {\beta } _{0}}\mathbf {a}E\left[ \varphi \left( \chi _{p+2,\frac{\varDelta ^{2}}{2} }^{2}\right) \right] \right) +b^{2}\\&\quad =-b^{2}\mathbf {-}b^{2}\left( \mathbf {a}^{\prime }{\varvec{\Sigma }} _{\tilde{\pmb {\beta }}_{N}^{F}}\mathbf {a}-\mathbf {a}^{\prime }{\varvec{{\Sigma }} }_{\tilde{\pmb {\beta }}_{N}^{F}}\mathbf {a}E\left[ \varphi \left( \chi _{p+2,\frac{\varDelta ^{2}}{2}}^{2}\right) \right] +\,\mathbf {a}^{\prime } {\varvec{\Sigma }}_{\pmb {\beta }_{0}}\mathbf {a}E\left[ \varphi \left( \chi _{p+2,\frac{\varDelta ^{2}}{2}}^{2}\right) \right] \right) \end{aligned}$$

By combining expressions (21)–(25) we obtain a final expression for \(E\left( M^{2}\right) \) in the limit as \(N\rightarrow \infty \):

$$\begin{aligned}&b^{2}\left[ \mathbf {a}^{\prime }{\varvec{\Sigma }}_{\tilde{{\varvec{{\beta }} }}_{N}^{F}}\mathbf {a}-\mathbf {a}^{\prime }{\varvec{\Sigma }}_{\tilde{ \pmb {\beta }}_{N}^{F}}\mathbf {a}E\left[ \varphi \left( \chi _{p+2,\frac{ \varDelta ^{2}}{2}}^{2}\right) \right] +\mathbf {a}^{\prime }{\varvec{\Sigma }}_{ \pmb {\beta }_{0}}\mathbf {a}E\left[ \varphi \left( \chi _{p+2,\frac{\varDelta ^{2}}{2}}^{2}\right) \right] \right] \\&\quad +\,b^{2}+2b^{2}\left( \mathbf {a}^{\prime }{\varvec{\Sigma }}_{\tilde{ \pmb {\beta }}_{N}^{F}}\mathbf {a}-\mathbf {a}^{\prime }{\varvec{\Sigma }}_{ \tilde{\pmb {\beta }}_{N}^{F}}\mathbf {a}E\left[ \varphi \left( \chi _{p+2, \frac{\varDelta ^{2}}{2}}^{2}\right) \right] +\,\mathbf {a}^{\prime }{\varvec{{\Sigma }}}_{\pmb {\beta }_{0}}\mathbf {a}E\left[ \varphi \left( \chi _{p+2, \frac{\varDelta ^{2}}{2}}^{2}\right) \right] \right) \\&\quad -\,2b^{2}\left( \mathbf {a}^{\prime }{\varvec{\Sigma }}_{\tilde{ \pmb {\beta }}_{N}^{F}}\mathbf {a}-\mathbf {a}^{\prime }{\varvec{\Sigma }}_{ \tilde{\pmb {\beta }}_{N}^{F}}\mathbf {a}E\left[ \varphi \left( \chi _{p+2, \frac{\varDelta ^{2}}{2}}^{2}\right) \right] +\,\mathbf {a}^{\prime }{\varvec{{\Sigma }}}_{\pmb {\beta }_{0}}\mathbf {a}E\left[ \varphi \left( \chi _{p+2, \frac{\varDelta ^{2}}{2}}^{2}\right) \right] \right) -b^{2}\\&\quad {-}\,b^{2}\left( \mathbf {a}^{\prime }{\varvec{\Sigma }}_{ \tilde{\pmb {\beta }}_{N}^{F}}\mathbf {a}-\mathbf {a}^{\prime }{\varvec{{\Sigma }} }_{\tilde{\pmb {\beta }}_{N}^{F}}\mathbf {a}E\left[ \varphi \left( \chi _{p+2,\frac{\varDelta ^{2}}{2}}^{2}\right) \right] +\mathbf {a}^{\prime } {\varvec{\Sigma }}_{\pmb {\beta }_{0}}\mathbf {a}E\left[ \varphi \left( \chi _{p+2,\frac{\varDelta ^{2}}{2}}^{2}\right) \right] \right) \end{aligned}$$

Therefore

$$\begin{aligned} \underset{N\rightarrow \infty }{\lim }E\left( M^{2}\right) =0 \end{aligned}$$
(26)

By substituting (20) and (26) into (19) completes the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kleyn, J., Arashi, M. & Millard, S. Preliminary test estimation in system regression models in view of asymmetry. Comput Stat 33, 1897–1921 (2018). https://doi.org/10.1007/s00180-018-0794-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-018-0794-y

Keywords

Navigation