Skip to main content
Log in

Nonparametric estimation in generalized varying-coefficient models based on iterative weighted quasi-likelihood method

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

This paper focuses on the estimation of the coefficient functions, which is of primary interest, in generalized varying-coefficient models with non-exponential family error. The local weighted quasi-likelihood method which results from local polynomial regression techniques is presented. The nonparametric estimator based on iterative weighted quasi-likelihood method is obtained to estimate coefficient functions. The asymptotic efficiency of the proposed estimator is given. Furthermore, some simulations are carried out to evaluate the finite sample performance of the proposed method, which show that it possesses some advantages to the previous methods. Finally, a real data example is used to illustrate the proposed methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Cai J, Fan J, Jiang J, Zhou H (2008) Partially linear hazard regression with varying coefficients for multivariate survival data. J R Stat Soc 70(1):141–158

    Article  MathSciNet  MATH  Google Scholar 

  • Cai Z, Fan J, Li R (2000a) Efficient estimation and inferences for varying-coefficient models. J Am Stat Assoc 95(451):888–902

    Article  MathSciNet  MATH  Google Scholar 

  • Cai Z, Fan J, Yao Q (2000b) Functional-coefficient regression models for nonlinear time series. J Am Stat Assoc 95(451):941–956

    Article  MathSciNet  MATH  Google Scholar 

  • Carroll RJ, Ruppert D, Welsh AH (1998) Local estimating equations. J Am Stat Assoc 93:214–227

    Article  MathSciNet  MATH  Google Scholar 

  • Chiou JM, Ma Y, Tsai CL (2012) Functional random effect time-varying coefficient model for longitudinal data. Statistic 1(1):75–89

    Google Scholar 

  • Fan J (1993) Local linear regression smoothers and their minimax. Ann Stat 21:196–216

    Article  MathSciNet  MATH  Google Scholar 

  • Fan J, Chen J (1999) One-step local quasi-likelihood estimation. J R Stat Soc 61(4):927–943

    Article  MathSciNet  MATH  Google Scholar 

  • Fan J, Gijbels I (1996) Local polynomial modelling and its applications: monographs on statistics and applied probability. CRC Press, Boca Raton

    MATH  Google Scholar 

  • Fan J, Huang T, Li R (2007) Analysis of longitudinal data with semiparametric estimation of covariance function. J Am Stat Assoc 102(478):632–641

    Article  MathSciNet  MATH  Google Scholar 

  • Hoover DR, Rice JA, Wu CO, Yang LP (1998) Nonparametric smoothing estimates of time-varying coefficient models with longitudinal data. Biometrika 85(4):809–822

    Article  MathSciNet  MATH  Google Scholar 

  • Huang JZ, Shen H (2004) Functional coefficient regression models for non-linear time series: a polynomial spline approach. Scand J Stat 31(4):515–534

    Article  MathSciNet  MATH  Google Scholar 

  • Huang JZ, Wu CO, Zhou L (2004) Polynomial spline estimation and inference for varying coefficient models with longitudinal data. Statistica Sinica 14(3):763–788

    MathSciNet  MATH  Google Scholar 

  • Kuruwita C, Kulasekera K, Gallagher C (2011) Generalized varying coefficient models with unknown link function. Biometrika 98(3):701–710

    Article  MathSciNet  MATH  Google Scholar 

  • Lian H (2012) Variable selection for high-dimensional generalized varying-coefficient models. Statistica Sinica 22(3):1563–1588

    MathSciNet  MATH  Google Scholar 

  • Lin JG, Zhu LX, Xie FC (2009) Heteroscedasticity diagnostics for t linear regression models. Metrika 70(1):59–77

    Article  MathSciNet  MATH  Google Scholar 

  • Nelder JA, Wedderburn RWM (1972) Generalized linear models. J Royal Stat Soc Ser A 135:370–384

    Article  Google Scholar 

  • Ramsay JO (2006) Functional data analysis. Wiley Online Library, New Jersey

    Book  Google Scholar 

  • Ruppert D, Wand MP (1994) Multivariate weighted least squares regression. Ann Stat 22:1346–1370

    Article  MathSciNet  MATH  Google Scholar 

  • Seifert B, Gasser T (1996) Finite-sample variance of local polynomials: analysis and solutions. J Am Stat Assoc 91(433):267–275

    Article  MathSciNet  MATH  Google Scholar 

  • Wedderburn RW (1974) Quasi-likelihood functions, generalized linear models, and the GaussNewton method. Biometrika 61(3):439–447

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Editor and two anonymous referees for their constructive comments which have greatly improved this paper. The research work is supported by the National Natural Science Foundation of China under Grant No. 11171065, 11401094, the Natural Science Foundation of Jiangsu Province of China under Grant No. BK20140617, BK20141326 and the Research Fund for the Doctoral Program of Higher Education of China under Grant No. 20120092110021

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Guan Lin.

Appendix

Appendix

1.1 Proof of the Theorem 1

The expression (17) can be obtained easily according to the expression (16) under some assumptions. For brevity, we outline only the proof of the expression (16). For each given point \(u\), the conditions \(\mathbf C1 \)\(\mathbf C6 \) proposed in the Sect. 3 are needed. For simplicity, we recall that the vector \(\hat{\xi }(u_0)\) maximizes (9). Here, we consider the normalized estimator

$$\begin{aligned} \hat{\xi }^{*}(u_0)= & {} \psi ^{-1}[\hat{\varsigma }_1(u_0)-b_1(u_0), \ldots , \hat{\varsigma }_p(u_0)-b_p(u_0), \\&\ldots , h^m\left\{ \hat{\varsigma }_1(u_0)-b_1(u_0)\right\} , \ldots , h^m\left\{ \hat{\varsigma }_p(u_0)-b_p(u_0)\right\} ]^T \end{aligned}$$

where \(\psi =(nh)^{-1/2}\). Let \(\bar{\eta }(u_0, u, \mathbf x )=\sum \nolimits _{j=1}^p{\left[ b_j(u_0)+ \cdots +b_j^{(m)}(u_0)(u-u_0)\right] x_{j}}\) and \(z_i=\left\{ \mathbf X _i^T, \frac{U_i-u_0}{h}\mathbf X _i^T, \ldots , \frac{(U_i-u_0)^m}{h^m}\mathbf X _i^T \right\} \). It can easily be seen that \(\hat{\xi }^{*}(u_0)\) maximizes

$$\begin{aligned} \sum \limits _{i=1}^n{\left( \int _{Y_i}^{\mu _i}\frac{Y_i-t}{V(t)}{\hbox {d}}t\right) K_h(U_i-u_0)}, \end{aligned}$$

where \(\mu _i=g^{-1}\left( \bar{\eta }(u_0,u,\mathbf x )+\psi \xi ^{*T}(u_0)Z_i\right) \). Equivalently, \(\hat{\xi }^{*}(u_0)\) maximizes

$$\begin{aligned} \ln \left( \hat{\xi }^{*}(u_0)\right) =\sum \limits _{i=1}^n{\left[ \int _{Y_i}^{\mu _i} \frac{Y_i-t}{V(t)}{\hbox {d}}t-\int _{Y_i}^{\bar{\mu }_i}\frac{Y_i-t}{V(t)}{\hbox {d}}t\right] K_h(U_i-u_0)}, \end{aligned}$$

where \(\bar{\mu }_i=\bar{\eta }(u_0, u, \mathbf x ))\). Condition \(\mathbf C5 \) implies that the function \(\ln (\cdot )\) is concave in \(\hat{\xi }^{*}(u_0)\). We have the following expression via a Taylor’s expansion:

$$\begin{aligned} \ln (\hat{\xi }^{*}(u_0))= & {} \psi \sum \limits _{i=1}^n\left\{ q_1\{\bar{\eta }_i(u_0),Y_i\}\xi ^{*T}(u_0) \Gamma _i(u_0) K\left( (U_i-u_0)/h\right) \right\} \\&+\frac{\psi ^2}{2}\sum \limits _{i=1}^n\left\{ q_2\{\bar{\eta }_i(u_0),Y_i\}\left[ \xi ^{*T}(u_0)\Gamma _i(u_0)\right] ^2K\left( (U_i-u_0)/h\right) \right\} \\&+ \frac{\psi ^3}{6}\psi \sum \limits _{i=1}^n\left\{ q_3\{\eta _i(u_0),Y_i\} \left[ \xi ^{*T}(u_0)\Gamma _i(u_0)\right] ^3 K\left( (U_i-u_0)/h\right) \right\} \\= & {} \Xi _n^T \xi ^{*}(u_0)+ \frac{1}{2}\xi ^{*T}(u_0)\Delta _n \xi ^{*}(u_0) + \Omega _n, \end{aligned}$$

where \(\bar{\eta }(u_0)=\bar{\eta }(u_0, u, \mathbf x ),\, \eta _i\) is between \(\bar{\eta }(u_0)\) and \(\bar{\eta }(u_0)+\psi \xi ^{*T}(u_0)\Gamma _i(u_0)\), and

$$\begin{aligned} \Xi _n= & {} \psi \sum \limits _{i=1}^n\left\{ q_1\{\bar{\eta }_i(u_0),Y_i\}\Gamma _i(u_0) K\left( (U_i-u_0)/h\right) \right\} ,\\ \Delta _n= & {} \frac{\psi ^2}{2}\sum \limits _{i=1}^n\left\{ q_2\{\bar{\eta }_i(u_0),Y_i\}\Gamma _i(u_0) \Gamma _i^T(u_0) K\left( (U_i-u_0)/h\right) \right\} , \end{aligned}$$

and

$$\begin{aligned} \Omega _n=\frac{\psi ^3}{6}\sum \limits _{i=1}^n\left\{ q_3\{\eta _i(u_0),Y_i\}(\xi ^{*T}(u_0)\Gamma _i(u_0))^3 K\left( (U_i-u_0)/h\right) \right\} . \end{aligned}$$

Note the fact that \((\Delta _n)_{ij}=(E \Delta _n)_{ij}+ O_p\left\{ \left[ \text {Var}(\Delta _n)_{ij}\right] ^{\frac{1}{2}}\right\} \), and take a Taylor’s expansion of \(\eta (u, \mathbf x )\) with respect to \(u\) around \(|u-u_0|<h\),

$$\begin{aligned} \eta (u, \mathbf x )=\bar{\eta }(u_0, u, \mathbf x )+ \frac{(u-u_0)^{m+1}}{(m+1)!}\eta ^{(m+1)}(u_0, \mathbf x )+o\left( h^{p+1}\right) , \end{aligned}$$

and

$$\begin{aligned} \eta (u, \mathbf x )=-\rho (u, \mathbf x )+o(1). \end{aligned}$$

Therefore, the expect of \(\Delta _n\)

$$\begin{aligned} E(\Delta _n)= & {} h^{-1}E\left[ q_2\{\eta (u_0), Y\}\Gamma (u_0)\Gamma ^T(u_0) K \left( \frac{U-u_0}{h}\right) \right] \\= & {} h^{-1}E\left[ \{-\rho (u, \mathbf x )+o(1)\}\Gamma (u_0) \Gamma ^T(u_0) K\left( \frac{U-u_0}{h}\right) \right] \\= & {} h^{-1}E\left[ -\rho (u, x)\mathbf X \mathbf X ^T \otimes \left( \begin{array}{ccc} 1 &{} \cdots &{} \frac{(U-u_0)^m}{h^m} \\ \vdots &{} &{} \vdots \\ \frac{(U-u_0)^m}{h^m} &{} \cdots &{} \frac{(U-u_0)^{2m}}{h^{2m}} \\ \end{array} \right) K\left( \frac{U-u_0}{h}\right) \right] +o(1) \\= & {} -f_U(u_0)\Theta \otimes \Pi (u_0)+ o(1) \\\rightarrow & {} -\Delta \end{aligned}$$

where \(\Pi (u_0)=E(\rho (u, \mathbf x )\mathbf X \mathbf X ^T|U=u)\). Besides, the element of the variance term can be calculated that \(\text {Var}(\Delta _n)_{ij}=E[(\Delta _{nij}-E\Delta _{nij})(\Delta _{nij} -E\Delta _{nij})^T]=O(\psi ^2)\). Therefore,

$$\begin{aligned} \Delta _n=-\Delta +o(1). \end{aligned}$$
(22)

Next, we will compute the expected value of the absolute of \(\Omega _n\),

$$\begin{aligned} E(\Omega _n)= & {} E\left[ |\psi ^3\sum _{i=1}^n q_3\{\eta _i(u_0), Y_i\} (\xi ^{*T}(u_0)\Gamma _i(u_0))^3K\left( \frac{U_i-u_0}{h}\right) |\right] \\= & {} h^{-1}\psi E\left[ |q_3\{\eta _1(u_0), Y_1\}\mathbf X _1^3 K\left( \frac{U_i-u_0}{h}\right) |\right] \\= & {} \psi \theta _1 E\left[ |q_3\{\eta _1(u_0), Y_1\}\mathbf X _1^3|\right] . \end{aligned}$$

since \(q_3\) is linear in \(Y\) with \(E(Y_1|(\mathbf X _1,U_1))<\infty \), we have \(E\left[ |q_3\{\eta _1(u_0), Y_1\}\mathbf X _1^3|\right] <\infty \), therefore, \(E(\Omega _n)=O(\psi )\). Combining the above equations leads to

$$\begin{aligned} \Xi _n^T \xi ^{*}(u_0)+ \frac{1}{2}\xi ^{*T}(u_0)\Delta \xi ^{*}(u_0) + o(1). \end{aligned}$$

By the quadratic approximation lemma (Fan and Gijbels 1996), we have

$$\begin{aligned} \xi ^{*}(u_0)=\Delta ^{-1} \Xi _n + o(1). \end{aligned}$$
(23)

If \(\Xi _n\) is a stochastically bounded sequence of random vectors. The asymptotic normality of \(\xi ^{*}(u_0)\) follows from that of \(\Xi _n\). So, we need to establish the asymptotic normality of \(\Xi _n\). To establish its asymptotic normality, the mean and covariance need to be computed. The mean

$$\begin{aligned} E(\Xi _n)= & {} n\psi E\left[ q_1\{\bar{\eta }(u_0), Y\}\Gamma (u_0) K(\frac{U_i-u_0}{h})\right] \nonumber \\= & {} n \psi E\left[ \rho (u, x)\mathbf X \mathbf X ^T \frac{{\mathbf {b}}^{(m+1)}(u_0)(U-u_0)^{m+1}}{(m+1)!} K_h\left( \frac{U_i-u_0}{h}\right) +o(h^{m+1})\right] \nonumber \\= & {} \psi {f_U(u_0)h^{m+1}}\Theta ^{-1}\varvec{\theta } \otimes \Pi (u_0) \frac{{\mathbf {b}}^{(m+1)}(u_0)}{(m+1)!}\left\{ 1+o(1)\right\} , \end{aligned}$$
(24)

where \(U_h=\left( 1, \frac{U-u_0}{h}, \ldots , \left( \frac{U-u_0}{h}\right) ^m\right) ^T,\, \varvec{\theta }=(\theta _{m+1}, \theta _{m+2}, \ldots , \theta _{2m+1})^T\), and \({\mathbf {b}}^{(m+1)}(u_0)=\left[ b^{(m+1)}_1(u_0), \ldots , b^{(m+1)}_p(u_0)\right] ^T\). An application of \(E(\Xi _n)\) calculated above and the definition of \(q_1\), one obtains that

$$\begin{aligned} \text {Var}(\Xi _n)= & {} n\psi ^2 \text {Var}\left[ q_1\left\{ \bar{\eta }(u_0), Y\right\} \Gamma (u_0) K\left( \frac{U_i-u_0}{h}\right) \right] \nonumber \\= & {} h^{-1} \left[ E q^2_1\left\{ \bar{\eta }(u_0), Y\right\} \Gamma (u_0) \Gamma ^T(u_0) K^2\left( \frac{U_i-u_0}{h}\right) +o(h^{m+1})\right] \nonumber \\= & {} f_U(u_0)\Theta ^{*}\otimes \Lambda (u_0) \nonumber \\\equiv & {} \mathbf B +o(1) \end{aligned}$$
(25)

where \(\Lambda (u_0)=\frac{\text {Var}(Y|U=u,\mathbf X =\mathbf x )}{\rho (u, \mathbf x )}\). In order to prove that

$$\begin{aligned} \left\{ \text {Var}(\Xi _n)\right\} ^{-1/2}(\Xi _n-E \Xi _n)\xrightarrow {D} N(0, \mathbf I _{p+1}), \end{aligned}$$
(26)

we now employ Cramér-Wold device to derive the asymptotic normality of \(\text {Var}(\Xi _n)\): for any unit vector \(\mathbf {e}\),

$$\begin{aligned} \left\{ \mathbf{e}^T \text {Var}(\Xi _n)\mathbf{e}\right\} ^{-1/2}(\mathbf {e}^T \Xi _n-E \mathbf {e}^T\Xi _n)\xrightarrow {D} N(0, 1), \end{aligned}$$
(27)

Combining (23), (24), (25) and (26), one has

$$\begin{aligned} \hat{\xi }^{*}(u_0)-\psi ^{-1}h^{m+1}f_U(u_0)\frac{{\mathbf {b}}^{m+1}(u_0)}{(m+1)!} \Delta ^{-1}\varvec{\theta }\otimes \Pi (u_0)\left\{ 1+o(1)\right\} \xrightarrow {D} N\left( 0, \Delta ^{-1}\mathbf B \Delta ^{-1}\right) . \end{aligned}$$
(28)

Therefore, the Theorem (16) holds true. Besides, it is easy to verify the Lyapounov’s condition for that sequence, that is formula (27) can easily be proved. If \(m=1\) and \(K(\cdot )\) is symmetric, then \(\theta _1=0\), so that (17) holds true. The proof is completed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, YY., Lin, JG. & Huang, XF. Nonparametric estimation in generalized varying-coefficient models based on iterative weighted quasi-likelihood method. Comput Stat 31, 247–268 (2016). https://doi.org/10.1007/s00180-015-0579-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-015-0579-5

Keywords

Mathematics Subject Classification

Navigation