Skip to main content
Log in

Sparse matrices in frame theory

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

Frame theory is closely intertwined with signal processing through a canon of methodologies for the analysis of signals using (redundant) linear measurements. The canonical dual frame associated with a frame provides a means for reconstruction by a least squares approach, but other dual frames yield alternative reconstruction procedures. The novel paradigm of sparsity has recently entered the area of frame theory in various ways. Of those different sparsity perspectives, we will focus on the situations where frames and (not necessarily canonical) dual frames can be written as sparse matrices. The objective for this approach is to ensure not only low-complexity computations, but also high compressibility. We will discuss both existence results and explicit constructions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. For the definition of the Zariski topology, we refer to the book by Hartshorne (1977).

References

  • Alexeev B, Cahill J, Mixon DG (2012) Full spark frames. J Fourier Anal Appl 18(6):1167–1194

    Article  MATH  MathSciNet  Google Scholar 

  • Bodmann BG, Casazza PG, Kutyniok G (2011) A quantitative notion of redundancy for finite frames. Appl Comput Harmon Anal 30(3):348–362

    Article  MATH  MathSciNet  Google Scholar 

  • Calderbank R, Casazza PG, Heinecke A, Kutyniok G, Pezeshki A (2011) Sparse fusion frames: existence and construction. Adv Comput Math 35(1):1–31

    Article  MATH  MathSciNet  Google Scholar 

  • Candès EJ, Romberg JK, Tao T (2006) Stable signal recovery from incomplete and inaccurate measurements. Commun Pure Appl Math 59(8):1207–1223

    Article  MATH  Google Scholar 

  • Casazza PG, Kutyniok G (eds) (2013) Finite frames: theory and applications. Applied and Numerical Harmonic Analysis. Birkhäuser/Springer, New York

  • Casazza PG, Fickus M, Mixon DG, Wang Y, Zhou Z (2011a) Constructing tight fusion frames. Appl Comput Harmon Anal 30(2):175–187

    Article  MATH  MathSciNet  Google Scholar 

  • Casazza PG, Heinecke A, Krahmer F, Kutyniok G (2011b) Optimally sparse frames. IEEE Trans Inf Theory 57(11):7279–7287

    Article  MathSciNet  Google Scholar 

  • Casazza PG, Heinecke A, Kornelson K, Wang Y, Zhou Z (2013) Necessary and sufficient conditions to perform Spectral tetris. Linear Algebra Appl 438(5):2239–2255

    Article  MATH  MathSciNet  Google Scholar 

  • Christensen O (2008) Frames and bases: an introductory course. Applied and numerical harmonic analysis. Birkhäuser Boston Inc., Boston

    Book  Google Scholar 

  • Daubechies I, Grossmann A, Meyer Y (1986) Painless nonorthogonal expansions. J Math Phys 27(5):1271–1283

    Article  MATH  MathSciNet  Google Scholar 

  • Donoho DL (2006) Compressed sensing. IEEE Trans Inf Theory 52(4):1289–1306

    Article  MathSciNet  Google Scholar 

  • Duffin RJ, Schaeffer AC (1952) A class of nonharmonic Fourier series. Trans Am Math Soc 72:341–366

    Article  MATH  MathSciNet  Google Scholar 

  • Eldar YC, Kutyniok G (eds) (2012) Compressed sensing: theory and applications. Cambridge University Press, Cambridge

  • Fickus M, Mixon DG, Tremain JC (2012) Steiner equiangular tight frames. Linear Algebra Appl 436(5):1014–1027

    Article  MATH  MathSciNet  Google Scholar 

  • Gantmacher FR (1959) Applications of the theory of matrices. Translated by Brenner JL with the assistance of Bushaw DW, Evanusa S. Interscience Publishers, Inc., New York

  • Gröchenig K (2001) Foundations of time-frequency analysis. Applied and numerical harmonic analysis. Birkhäuser Boston Inc., Boston

    Google Scholar 

  • Hartshorne R (1977) Algebraic geometry. Springer-Verlag, New York. Graduate texts in mathematics, No. 52

  • Krahmer F, Pfander GE, Rashkov P (2008) Uncertainty in time-frequency representations on finite abelian groups and applications. Appl Comput Harmon Anal 25(2):209–225

    Article  MATH  MathSciNet  Google Scholar 

  • Krahmer F, Kutyniok G, Lemvig J (2013) Sparsity and spectral properties of dual frames. Linear Algebra Appl 439(4):982–998

    Article  MATH  MathSciNet  Google Scholar 

  • Kutyniok G (2013) Theory and applications of compressed sensing. GAMM Mitteilungen 36(1):79–101

    Google Scholar 

  • Kutyniok G, Okoudjou KA, Philipp F, Tuley EK (2013) Scalable frames. Linear Algebra Appl 438(5):2225–2238

    Article  MATH  MathSciNet  Google Scholar 

  • Lemvig J, Miller C, Okoudjou KA (2013) Prime tight frames. Adv Comput Math, to appear. doi:10.1007/s10444-013-9309-0

  • Li S (1995) On general frame decompositions. Num Funct Anal Optim 16(9–10):1181–1191

    Article  MATH  Google Scholar 

  • Li S, Liu Y, Mi T (2013) Sparse dual frames and dual Gabor functions of minimal time and frequency supports. J Fourier Anal Appl 19(1):48–76

    Article  MathSciNet  Google Scholar 

  • Pakovich F (2007) A remark on the Chebotarev theorem about roots of unity. Integers, 7:A18, 2

  • Stevenhagen P, Lenstra HW Jr (1996) Chebotarëv and his density theorem. Math Intell 18(2):26–37

    Article  MATH  MathSciNet  Google Scholar 

  • Wexler J, Raz S (1990) Discrete gabor expansions. Signal Process 21(3):207–220

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the referees whose detailed reports have significantly improved the presentation of the paper. The second author acknowledges support by the Einstein Foundation Berlin, by Deutsche Forschungsgemeinschaft (DFG) Grant SPP-1324 KU 1446/13 and DFG Grant KU 1446/14, by the DFG Collaborative Research Center TRR 109 “Discretization in Geometry and Dynamics”, and by the DFG Research Center Matheon “Mathematics for Key Technologies” in Berlin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gitta Kutyniok.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krahmer, F., Kutyniok, G. & Lemvig, J. Sparse matrices in frame theory. Comput Stat 29, 547–568 (2014). https://doi.org/10.1007/s00180-013-0446-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-013-0446-1

Keywords

Navigation