Skip to main content
Log in

Graphs as navigational infrastructure for high dimensional data spaces

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

We propose using graph theoretic results to develop an infrastructure that tracks movement from a display of one set of variables to another. The illustrative example throughout is the real-time morphing of one scatterplot into another. Hurley and Oldford (J Comput Graph Stat 2010) made extensive use of the graph having variables as nodes and edges indicating a paired relationship between them. The present paper introduces several new graphs derivable from this one whose traversals can be described as particular movements through high dimensional spaces. These are connected to known results in graph theory and the graph theoretic results applied to the problem of visualizing high-dimensional data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alspach B, Bermond J-C, Sotteau D (1990) Decomposition into cycles I: Hamilton decompositions. In: Hahn G, Sabidussi G, Woodrow RE (eds) Cycles and rays. Kluwer, Boston

    Google Scholar 

  • Andrews DF (1972) Plots of high-dimensional data. Biometrics 28: 125–136

    Article  Google Scholar 

  • Anderson E (1935) The irises of the Gaspé Peninsula. Bull Am Iris Soc 59: 2–5

    Google Scholar 

  • Bosák J (1990) Decompositions of graphs. Kluwer, Dordrecht

    MATH  Google Scholar 

  • Breiman L, Friedman J (1985) Estimating optimal transformations for multiple regression and correlation. J Am Stat Assoc 80: 580–598

    Article  MathSciNet  MATH  Google Scholar 

  • Buja A, Asimov D, Hurley C, McDonald JA (1988) Elements of a viewing pipeline for data analysis. In: Cleveland W, McGill M (eds) Dynamic graphics for statistics. Wadsworth, Belmont, pp 277–308

    Google Scholar 

  • Buja A, McDonald JA, Michalak J, Stuetzle W (1991) Interactive data visualization using focusing and linking. In: Proceedings of the 2nd IEEE conference on visualization, pp 156–163

  • Chartrand G (1965) The existence of complete cycles in repeated line-graphs. Bull Am Math Soc 71: 668–670

    Article  MathSciNet  MATH  Google Scholar 

  • Chartrand G, Wall CE (1973) On the Hamiltonian index of a graph. Stud Sci Math Hung 8: 43–48

    MathSciNet  Google Scholar 

  • Chen Y-C (2000) Kneser graphs are Hamiltonian for n ≥ 3k. J Comb Theory Ser B 80: 69–79

    Article  MATH  Google Scholar 

  • Cleveland WJ (1993) Visualizing data. Hobart Press, Summit, New Jersey

    Google Scholar 

  • Cook D, Buja A, Cabrera J, Hurley C (1995) Grand tour and projection pursuit. J Comput Graph Stat 4: 155–172

    Article  Google Scholar 

  • Cox BA, Rodger CA (1996) Cycle systems of the line graph of the complete graph. J Graph Theory 21: 173–182

    Article  MathSciNet  MATH  Google Scholar 

  • Cox DR, Wermuth N (1996) Multivariate dependencies: models, analysis and interpretation. Chapman and Hall/CRC Press, Boca Raton

    MATH  Google Scholar 

  • Fisher RA (1936) The use of multiple measurements in taxonomic problems. Ann Eugen 7: 179–188

    Article  Google Scholar 

  • Fleury (1883) Deux problèmes de géométrie de situation. Journal de mathématiques élémentaires, pp 257–261

  • Friendly M (2002) A brief history of the mosaic display. J Comput Graph Stat 11: 89–107

    Article  MathSciNet  Google Scholar 

  • Friedman JH, Stuetzle W (1981) Projection pursuit regression. J Am Stat Assoc 76: 817–823

    Article  MathSciNet  Google Scholar 

  • Fruchterman TMJ, Reingold EM (1991) Graph drawing by force-directed placement. Softw Practice Exp 21: 1129–1164

    Article  Google Scholar 

  • Gould RJ (2004) Hamiltonian graphs. In: Gross J, Yellen J (eds) Handbook of graph theory (Chap. 4). CRC Press, Boca Raton, pp 261–278

    Google Scholar 

  • Gross, JL, Yellen, J (eds) (2004) Handbook of graph theory. CRC Press, Boca Raton

    MATH  Google Scholar 

  • Heinrich K, Verrall H (1997) A construction of a perfect set of Euler tours of K 2k+1. J Comb Des 5: 215–230

    Article  MathSciNet  MATH  Google Scholar 

  • Hierholzer C (1873) Über die Möglichkeit, einen Linienzug ohne Wiederholung und ohne Unterbrechung zu umfahren. Math Ann VI: 30–32

    Article  MathSciNet  Google Scholar 

  • Hofmann H, Wilkinson L, Wickham H, Temple Lang D, Anand A (2007) The scagnostics package http://www.r-project.org

  • Hurley C (2004) Clustering visualizations of multidimensional data. J Comput Graph Stat 13(4): 788–806

    Article  MathSciNet  Google Scholar 

  • Hurley C, Oldford RW (2010) Pairwise Display of high-dimensional information via Eulerian tours and Hamiltonian decompositions. J Comput Graph Stat 19(4): 861–886

    Article  Google Scholar 

  • Hurley C, Oldford RW (2011) Eulerian tour algorithms for data visualization and the PairViz package. Comput Stat. doi:10.1007/s00180-011-0229-5

  • Hurley C, Oldford RW (2009) Pair Viz: visualization using Eulerian tours and Hamiltonian decompositions, R package version 1.0, http://www.r-project.org

  • Imrich W, Izbicki H (1975) Associative products of graphs. Monatschefte für Mathematik 80: 277–281

    Article  MathSciNet  MATH  Google Scholar 

  • Inselberg A (2009) Parallel coordinates: visual multidimensional geometry and its applications. Springer, Berlin

    MATH  Google Scholar 

  • Kolaczyk E (2009) Statistical analysis of network data: methods and models. Springer, New York

    Book  MATH  Google Scholar 

  • Lauritzen S (1999) Graphical models. Oxford University Press, Oxford

    Google Scholar 

  • Michailidis G (2006) Data visualization through their graph representations. In: Chen C-H, Härdle W, Unwin A (eds) Handbook of data visualization (Chap. II.4). Springer, Berlin, pp 103–120

    Google Scholar 

  • Muthusamy A, Paulraja P (1995) Hamilton cycle decomposition of line graphs and a conjecture of Bermond. J Comb Theory, Ser B, 64: 1–16

    Article  MathSciNet  MATH  Google Scholar 

  • Oldford RW (2003) Understanding probabilistic independence and its modelling via Eikosograms and graphs, http://www.stats.uwaterloo.ca/~rwoldfor/papers/venn/eikosograms/independence/paper.pdf

  • Oldford RW, Waddell A (2010) RnavGraph: navigating high dimensional data via graphs, R package version 1.0, http://www.r-project.org

  • Pike DA (1995) Hamilton decompositions of line graphs. J Graph Theory 20: 473–479

    Article  MathSciNet  MATH  Google Scholar 

  • Swayne DF, Cook D, Buja A (1998) XGobi: interactive dynamic data visualization in the X window system. J Comput Graph Stat 7: 113–130

    Article  Google Scholar 

  • Verrall H (1998) A construction of a perfect set of Euler Tours of K 2k  + I. J Comb Des 6: 183–211

    Article  MathSciNet  MATH  Google Scholar 

  • Whittaker J (2009) Graphical models in applied multivariate statistics. Wiley, Chichester

    Google Scholar 

  • Wilkinson L, Anand A, Grossman R (2005) Graph-theoretic scagnostics. In: Proceedings of the IEEE information visualization, pp 157–164

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. W. Oldford.

Additional information

C. B. Hurley: Research supported in part by a Research Frontiers Grant from Science Foundation Ireland.

R. W. Oldford: Research supported in part by a Discovery Grant from the Natural Sciences and Engineering Research Council of Canada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hurley, C.B., Oldford, R.W. Graphs as navigational infrastructure for high dimensional data spaces. Comput Stat 26, 585–612 (2011). https://doi.org/10.1007/s00180-011-0228-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-011-0228-6

Keywords

Navigation