Skip to main content
Log in

Experimental and numerical study of process limits for deep drawing of dome-structured sheet metals

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The demand for lightweight materials is increasing due to energy saving in the sheet metal forming industry. Structured sheet metals are a strong yet lightweight material. But the process limits for deep drawing of structured sheet metals should be investigated for the forming process. In this study, the stiffness properties and the process limits of dome-structured duplex stainless steel (DSS) were determined experimentally by three-point bending test and Erichsen test, respectively. Also, the Erichsen test was simulated using ABAQUS. Firstly, the forming limit diagram (FLD) of DSS was determined. After that, the dome structures, which had diameters of 3, 6, and 9 mm, were stamped on planar DSS sheet metal. The bending test results showed that the bending strength of 6- and 9-mm dome-structured sheet metal was two times higher than planar and 3-mm dome-structured sheet metal. After the dome stamping process, the 3- and 6-mm dome-structured sheet metal still had a process safety margin of 58 and 47%, respectively, for uniaxial tension in the FLD. On the other hand, the 9-mm dome-structured sheet metal had a process safety margin of 57% for biaxial tension in the FLD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Immarigeon JP, Holt RT, Koul AK, Zhao L, Wallace W, Beddoes JC (1995) Lightweight materials for aircraft applications. Mater Charact 35(1):41–67. doi:10.1016/1044-5803(95)00066-6

    Article  Google Scholar 

  2. Noor AK, Venneri SL, Paul DB, Hopkins MA (2000) Structures technology for future aerospace systems. Comput Struct 74(5):507–519. doi:10.1016/S0045-7949(99)00067-X

    Article  Google Scholar 

  3. Williams JC, Starke EA Jr (2003) Progress in structural materials for aerospace systems 1. Acta Materialia 51(19):5775–5799. doi:10.1016/j.actamat.2003.08.023

    Article  Google Scholar 

  4. Malikov V, Ossenbrink R, Viehweger B, Michailov V (2011) Analytical and numerical calculation of the force and power requirements for air bending of structured sheet metals. Key Eng Mater 473:602–609

    Article  Google Scholar 

  5. M. Mirtsch A Yadav (2006) Structured sheet metal - part I. Stamp J

  6. Mirtsch F, Weinert N, Pech M, Seliger G Vault structures enabling sustainable products. In: 13th International Conference on Life Cycle Engineering, 2006. Citeseer, pp 629–634

  7. Yadav A (2006) Structured sheet metal Stamping Journal JUNE 13

  8. Malikov V, Ossenbrink R, Viehweger B, Michailov V (2013) Experimental study of the change of stiffness properties during deep drawing of structured sheet metal. J Mater Process Technol 213(11):1811–1817. doi:10.1016/j.jmatprotec.2013.05.005

    Article  Google Scholar 

  9. Malikov V, Ossenbrink R, Viehweger B, Michailov V (2012) Investigation of air bending of structured sheet metals by multistage FE simulation. Int J Adv Manuf Technol 63(5):449–455. doi:10.1007/s00170-012-3927-4

    Article  Google Scholar 

  10. Malikov V, Ossenbrink R, Viehweger B, Michailov V (2011) Experimental investigation and analytical calculation of the bending force for air bending of structured sheet metals. Adv Mater Res 418:1294–1300

    Article  Google Scholar 

  11. Langhof C, Sarradj E (2013) Sound insulation of structured double walls. Paper presented at the AIA-DAGA 2013 conference on acoustic

  12. Kornienko E, Ossenbrink R, Michailov V (2011) Corrosion properties of structured sheet metals in salt environment. Eng Rev 31(2):97–104

    Google Scholar 

  13. Kornienko E, Ossenbrink R, Michailov V (2013) Evaluation of corrosion behaviour of organin-coated structured sheet metals. Corrosão e Protecção de Materiais 32(3):82–86

    Google Scholar 

  14. Carbajal N, Mujika F (2009) Determination of compressive strength of unidirectional composites by three-point bending tests. Polym Test 28(2):150–156. doi:10.1016/j.polymertesting.2008.11.003

    Article  Google Scholar 

  15. Nunes JP, Pouzada AS, Bernardo CA (2002) The use of a three-point support flexural test to predict the stiffness of anisotropic composite plates in bending. Polym Test 21(1):27–33. doi:10.1016/S0142-9418(01)00040-X

    Article  Google Scholar 

  16. Mujika F (2007) On the effect of shear and local deformation in three-point bending tests. Polym Test 26(7):869–877. doi:10.1016/j.polymertesting.2007.06.002

    Article  Google Scholar 

  17. ASTM-E643–15 (2015) Standard test method for ball punch deformation of metallic sheet material. ASTM Stand. doi:10.1520/E0643-15

    Google Scholar 

  18. Takuda H, Yoshii T, Hatta N (1999) Finite-element analysis of the formability of a magnesium-based alloy AZ31 sheet. J Mater Process Technol 89–90:135–140. doi:10.1016/S0924-0136(99)00039-4

    Article  Google Scholar 

  19. Safari M, Hosseinipour S, Azodi H (2011) Experimental and numerical analysis of forming limit diagram (FLD) and forming limit stress diagram (FLSD). Mater Sci Appl 2(5):496–502. doi:10.4236/msa.2011.25067

    Google Scholar 

  20. Panich S, Barlat F, Uthaisangsuk V, Suranuntchai S, Jirathearanat S (2013) Experimental and theoretical formability analysis using strain and stress based forming limit diagram for advanced high strength steels. Mater Des 51:756–766. doi:10.1016/j.matdes.2013.04.080

    Article  Google Scholar 

  21. Jinlong L, Wenli G, Tongxiang L The effect of pre-deformation on corrosion resistance of the passive film formed on 2205 duplex stainless steel. J Alloys Compd. doi:10.1016/j.jallcom.2016.06.003

  22. Karahan T, Ertek Emre H, Tümer M, Kaçar R (2014) Strengthening of AISI 2205 duplex stainless steel by strain ageing. Mater Des 55:250–256. doi:10.1016/j.matdes.2013.09.065

    Article  Google Scholar 

  23. Li S, Ren X, Ji X, Gui Y (2014) Effects of microstructure changes on the superplasticity of 2205 duplex stainless steel. Mater Des 55:146–151. doi:10.1016/j.matdes.2013.09.042

    Article  Google Scholar 

  24. Yıldızlı K (2015) Investigation on the microstructure and toughness properties of austenitic and duplex stainless steels weldments under cryogenic conditions. Mater Des 77:83–94. doi:10.1016/j.matdes.2015.04.008

    Article  Google Scholar 

  25. Hamada J, Ono N (2010) Effect of microstructure before cold rolling on texture and formability of duplex stainless steel sheet. Mater Trans 51(4):635–643. doi:10.2320/matertrans.MG200907

    Article  Google Scholar 

  26. Rana R, Loiseaux J, Lahaye C (2012) Microstructure, mechanical properties and formability of a duplex steel. In: Chandra T, Ionescu M, Mantovani D (eds) Thermec 2011, Pts 1–4, vol 706-709. Materials Science Forum. Trans Tech Publications Ltd, Stafa-Zurich, pp 2271–2277. doi:10.4028/www.scientific.net/MSF.706-709.2271

    Google Scholar 

  27. He H, Li JY, Qin LY, Wang YD, Fang F (2014) Microstructures and properties of 0Cr32N17Mo4N duplex stainless steel after various forming processes. Acta Metall Sin 50(1):1–10. doi:10.3724/sp.j.1037.2013.00393

    Google Scholar 

  28. ASTM-E8/E8M-15a (2015) Standard test methods for tension testing of metallic materials. ASTM Standard. doi:10.1520/E0008_E0008M-15A

    Google Scholar 

  29. Dengiz CG (2014) Deep drawing and hydroforming capabilities of the dome-textured and planary duplex stainless steel sheets. Master Thesis, Ondokuz Mayis University, Samsun

  30. Manual AU (2010) Version 6.10. ABAQUS Inc

  31. Campos HB, Butuc MC, Grácio JJ, Rocha JE, Duarte JMF (2006) Theorical and experimental determination of the forming limit diagram for the AISI 304 stainless steel. J Mater Process Technol 179(1):56–60

    Article  Google Scholar 

  32. Haddad A, Arrieux R, Vacher P (2000) Use of two behaviour laws for the determination of the forming-limit stress diagram of a thin steel sheet: results and comparisons. J Mater Process Technol 106(1):49–53

    Article  Google Scholar 

  33. Djavanroodi F, Derogar A (2010) Experimental and numerical evaluation of forming limit diagram for Ti6Al4V titanium and Al6061-T6 aluminum alloys sheets. Mater Des 31(10):4866–4875. doi:10.1016/j.matdes.2010.05.030

    Article  Google Scholar 

  34. Holmberg S, Enquist B, Thilderkvist P (2004) Evaluation of sheet metal formability by tensile tests. J Mater Process Technol 145(1):72–83

    Article  Google Scholar 

  35. ASTM-E517–00 (2011) Standard test method for plastic strain ratio r for sheet metal. ASTM Stand. doi:10.1520/E0517-00R10

    Google Scholar 

  36. Kalpakjian S, Schmid SR (2007) Manufacturing processes for Engineering materials, 5/E. In: manufacturing processes for Engineering materials, 5/E. Prentice hall, Illinois Institute of Technology

  37. Mitukiewicz G, Anantheshwara K, Zhou G, Mishra RK, Jain MK (2014) A new method of determining forming limit diagram for sheet materials by gas blow forming. J Mater Process Technol 214(12):2960–2970. doi:10.1016/j.jmatprotec.2014.06.020

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kemal Yıldızlı.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dengiz, C.G., Yıldızlı, K. Experimental and numerical study of process limits for deep drawing of dome-structured sheet metals. Int J Adv Manuf Technol 92, 4457–4472 (2017). https://doi.org/10.1007/s00170-017-0450-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-017-0450-7

Keywords

Navigation