Skip to main content
Log in

Generating spiral tool paths based on spiral enter assistant line

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In order to increase cutting width, decrease tool path length, and improve machining efficiency, the spiral enter assistant line (SEAL) is embedded into a convex pocket to plan a spiral tool path. First, the inner offset curve of the pocket boundary undergoes equidistant division to acquire the external equidistant points. Subsequently, principal component analysis (PCA) and length factors optimization are employed to obtain SEAL. Next, vector operation is performed on the external equidistant points and SEAL to calculate the corresponding internal points. After connecting the external equidistant points and the corresponding internal points, a B-spline spiral tool path is planned based on linear interpolation and B-spline curve fitting. In addition, the length factors can be adjusted to modify the distribution and length of the tool path. Theoretical analysis and machining experiments demonstrate that compared to other conventional algorithms, the spiral tool path presented in this study has obvious advantages on cutting width, tool path length, and machining efficiency. These advantages are especially pronounced when the major principal axis is much longer than the minor principal axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bieterman MB Sandstrom DR(2003) a curvilinear tool-path method for pocket machining. J Manuf Sci E-T Asme 125(4):709–715. doi:10.1115/1.1596579

  2. Heo E, Kim D, Lee J, Lee C, Chen FF (2011) High speed pocket milling planning by feature-based machining area partitioning. ROBOT CIM-INT MANUF 27(4):706–713. doi:10.1016/j.rcim.2010.12.007

    Article  Google Scholar 

  3. Park SC, Choi BK (2000) Tool-path planning for direction-parallel area milling. Comput Aided Des 32(1):17–25. doi:10.1016/S0010-4485(99)00080-9

    Article  Google Scholar 

  4. Park SC, Chung YC, Choi BK (2003) Contour-parallel offset machining without tool-retractions. Comput Aided Des 35(9):841–849. doi:10.1016/S0010-4485(02)00111-2

    Article  Google Scholar 

  5. Chuang J, Yang D (2007) A Laplace-based spiral contouring method for general pocket machining. Int J Adv Manuf Tech 34(7):714–723. doi:10.1007/s00170-006-0648-6

    Article  Google Scholar 

  6. Richardson DJ, Keavey MA, Dailami F (2006) Modelling of cutting induced workpiece temperatures for dry milling. Int J Mach Tool Manu 46(10):1139–1145. doi:10.1016/j.ijmachtools.2005.08.008

    Article  Google Scholar 

  7. Elber G, Cohen E, Drake S (2005) MATHSM: medial axis transform toward high speed machining of pockets. Comput Aided Des 37(2):241–250. doi:10.1016/j.cad.2004.05.008

    Article  Google Scholar 

  8. Dolen M, Yaman U (2014) New morphological methods to generate two-dimensional curve offsets. Int J Adv Manuf Tech 71(9):1687–1700. doi:10.1007/s00170-013-5595-4

    Article  Google Scholar 

  9. Held M, Spielberger C (2009) A smooth spiral tool path for high speed machining of 2D pockets. Comput Aided Des 41(7):539–550. doi:10.1016/j.cad.2009.04.002

    Article  Google Scholar 

  10. Li X, Liang J, Ni P, Wang Y, Song Y, Tong L (2014) Novel path generation algorithm for high-speed pocket milling. Int J Prod Res 52(2):397–404. doi:10.1080/00207543.2013.828172

    Article  Google Scholar 

  11. Romerocarrillo P, Torresjimenez E, Dorado R, Díaz-Garrido F (2015) Analytic construction and analysis of spiral pocketing via linear morphing. Comput Aided Des 69:1–10. doi:10.1016/j.cad.2015.07.008

    Article  Google Scholar 

  12. Jolliffe IT (2005) Principal component analysis. Technometrics 44(5):594–609. doi:10.1198/tech.2003.s783

    Google Scholar 

  13. Kambhatla N, Leen TK (1997) Dimension reduction by local principal component analysis. Neural Comput 9(7):1493–1516. doi:10.1162/neco.1997.9.7.1493

    Article  Google Scholar 

  14. Srinivas M, Patnaik LM (1994) Adaptive probabilities of crossover and mutation in genetic algorithms. IEEE Trans Syst Man & Cybern 24(4):656–667. doi:10.1109/21.286385

    Article  Google Scholar 

  15. Klain DA (2004) An intuitive derivation of Heron’s formula. Am Mach Mon 111(8):709–712. doi:10.2307/4145045

    Article  MathSciNet  MATH  Google Scholar 

  16. Eguchi RG, Carlson FP (1970) Linear vector operations in coherent optical data processing systems. Appl Opt 9(3):687–694. doi:10.1364/AO.9.000687

    Article  Google Scholar 

  17. Maekawa T, Matsumoto Y, Namiki K (2007) Interpolation by geometric algorithm. Comput Aided Des 39(4):313–323. doi:10.1016/j.cad.2006.12.008

    Article  Google Scholar 

  18. Zheng C, Cai J, Yin H (2012) A linear interpolation-based algorithm for path planning and replanning on girds. Adv Linear Algebr Matrix Theory 2:20–24. doi:10.4236/alamt.2012.22003

    Article  Google Scholar 

  19. Iglesias A (2011) Efficient particle swarm optimization approach for data fitting with free knot B-splines. Comput Aided Des 43(12):1683–1692. doi:10.1016/j.cad.2011.07.010

    Article  Google Scholar 

  20. Liu Z, Li X, Song Y, Yi B, Chen F (2016) Lofting-based spiral tool path generation algorithm for milling a pocket with an island. Int J Adv Manuf Technol. doi:10.1007/s00170-016-8951-3

    Google Scholar 

  21. Lartigue C, Thiebaut F, Maekawa T (2001) CNC tool path in terms of B-spline curves. Comput Aided Des 33(4):307–319. doi:10.1016/S0010-4485(00)00090-7

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiongbing Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Li, X., Song, Y. et al. Generating spiral tool paths based on spiral enter assistant line. Int J Adv Manuf Technol 92, 869–879 (2017). https://doi.org/10.1007/s00170-017-0130-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-017-0130-7

Keywords

Navigation