Skip to main content
Log in

Tool orientation optimization for 5-axis machining with C-space method

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Collision avoidance is a fundamental problem in five-axis tool path planning. A two-step frame is widely used in tool path generation, that is, to determine C-spaces and then to design collision free pathes in the C-spaces. We present a feasible C-space computation algorithm for triangular mesh models based on collision-cone computation and stereographic projection. Then we sample points in the free area at each CC point and generate a tool orientation using the graph-based method. We also introduce a difference graph to find a smoother tool orientation. Experimental results show that the accelerations and velocities of the rotation axes are much smoother than those given by Plakhotnik and Lauwers (Int J Adv Manuf Technol 74:307–318, 2014).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Plakhotnik D, Lauwers B (2014) Graph-based optimization of five-axis machine tool movements by varying tool orientation. Int J Adv Manuf Technol 74:307–318

    Article  Google Scholar 

  2. Boyse JW (1979) Interference detection among solids and surfaces. Commun Acm 22(1):3–9

    Article  Google Scholar 

  3. Moore M, Wilhelms J (1988) Collision detection and response for computer animation. Comput Graph 22 (4):289–298

    Article  Google Scholar 

  4. Wang WP, Wang JY, Kim MS (2001) An algebraic condition for the separation of two ellipsoids. Comput Aided Geom Des 18:531–539

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen Y, Shen LY, Yuan CM (2011) Collision and intersection detection of two ruled surfaces using bracket method. Comput Aided Geom Des 28(2):114–126

    Article  MathSciNet  MATH  Google Scholar 

  6. Bobrow JE, Dubowsky S, Gibson JS (1985) Time-Optimal Control of robotic manipulators along specified paths. Int J Robot Res 4(3):3–17

    Article  Google Scholar 

  7. Timar SD, Farouki RT, Smith TS, Boyadjieff CL (2005) Algorithms for time-optimal control of CNC machines along curved tool paths. Robot Comput Integr Manuf 21:37–53

    Article  Google Scholar 

  8. Zhang K, Yuan CM, Gao XS (2013) Efficient algorithm for time-optimal feedrate planning and smoothing with confined chord error and acceleration. Int J Adv Manuf Technol 66(9):1685–1697

    Article  Google Scholar 

  9. Yang Z, Shen LY, Yuan CM, Gao XS (2015) Curve fitting and optimal interpolation for CNC machining under confined error using quadratic B-splines. Comput Aided Des 66:62–72

    Article  MathSciNet  Google Scholar 

  10. Lozano-Perez T (1983) Spatial planning: a configuration space approach. IEEE Trans Comput 100(2):108–120

    Article  MathSciNet  MATH  Google Scholar 

  11. Bajaj C, Kim MS (1987) Generation of configuration space obstacles: the case of moving algebraic curves. Algorithmica 4(2):157–172

    MathSciNet  MATH  Google Scholar 

  12. Choi BK, Kim DH, Jerard RB (1997) C-space approach to tool path generation for die and mould machining. Comput Aided Des 29(9):657–669

    Article  Google Scholar 

  13. Choi BK (2001) C-space approach to tool path generation for sculptured surface machining. Geom Modell: Theor Comput Basis Towards Adv CAD Appl 75:85–97

    Article  Google Scholar 

  14. Tang TD (2014) Algorithms for collision detection and avoidance for five-axis NC machining: a state of the art review. Comput Aided Des 51:1–17

    Article  Google Scholar 

  15. Morishige K, Takeuchi Y (1997) 5-axis control rough cutting of an impeller with efficiency and accuracy. IEEE Int Conf Robot Autom 2:1241–1246

    Google Scholar 

  16. Morishige K, Kase Y, Takeuchi Y (1997) Collision-free tool path generation using 2-dimensional C-space for 5-axis control machining. Int J Adv Manuf Technol 13:393–400

    Article  Google Scholar 

  17. Jun CS, Cha K, Lee YS (2003) Optimizing tool orientations for 5-axis machining by configuration-space search method. Comput Aided Des 35(6):549–566

    Article  Google Scholar 

  18. Lu J, Cheatham R, Jensen CG, Bowman B (2008) A three-dimensional configuration-space method for 5-axis tessellated surface machining. Int J Comput Integr Manuf 21(5):550–568

    Article  Google Scholar 

  19. Lin ZW, Shen HY, Gan WF (2012) Approximate tool posture collision-free area generation for five-axis CNC finishing process using admissible area interpolation. Int J Adv Manuf Technol 62(9C12):1191C1203

    Google Scholar 

  20. Liu W, Zhang JW, Cao ZY, Zhu SM, Yuan TJ (2016) Direct 5-axis tool posture local collision-free area generation for point clouds. Int J Comput Integr Manuf 9:1–13

    Google Scholar 

  21. Li LL, Zhang YF, Li HY, Geng L (2010) Generating tool path with smooth posture change for five-axis sculptured surface machining based on cutters accessibility map. Int J Adv Manuf Technol 53:699–709

    Article  Google Scholar 

  22. Lin ZW, Fu JZ, Shen HY, Gan WF (2014) Non-singular tool path planning by translating tool orientations in C-space. Int J Adv Manuf Technol 71(9-12):1835–1848

    Article  Google Scholar 

  23. Wang N, Tang K (2007) Automatic generation of gouge-free and angular-velocity-compliant five-axis toolpath. Comput Aided Des 39(10):841–852

    Article  Google Scholar 

  24. Hauth S, Richterich C, Glasmacher L, Linsen L (2011) Constant cusp toolpath generation in configuration space based on offset curves. Int J Adv Manuf Technol 53(1):325–338

    Article  Google Scholar 

  25. Hauth S, Linsen L (2011) Double-spiral tool path in configuration space. Int J Adv Manuf Technol 54 (9-12):1011–1022

    Article  Google Scholar 

  26. Hauth S, Linsen L (2012) Cycloids for polishing along double-spiral toolpaths in configuration space. Int J Adv Manuf Technol 60:343–356

    Article  Google Scholar 

  27. Kanungo T, Mount DM, Netanyahu NS, Piatko CD, Silverman R, Wu AY (2002) An efficient k-means clustering algorithm: analysis and implementation. IEEE Trans Pattern Anal Mach Intell 24(7):881–892

    Article  MATH  Google Scholar 

  28. Guo J, Hermelin D, Komusiewicz C (2014) Local search for string problems: Brute-force is essentially optimal. Theor Comput Sci 525:30–41

    Article  MathSciNet  MATH  Google Scholar 

  29. Peng Y, Yong JH, Dong WM, Zhang H, Sun JG (2005) A new algorithm for Boolean operations on general polygons. Comput Graph 29:57–70

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Yong Shen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mi, Z., Yuan, CM., Ma, X. et al. Tool orientation optimization for 5-axis machining with C-space method. Int J Adv Manuf Technol 88, 1243–1255 (2017). https://doi.org/10.1007/s00170-016-8849-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-016-8849-0

Keywords

Navigation