Skip to main content
Log in

The effect of external longitudinal magnetic field on laser-MIG hybrid welding

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Applying the external longitudinal magnetic field to laser-metal inert gas (MIG) hybrid welding, its influence on the arc/plasma shape, motion characterization, and coupling of these two sources are researched using a high-speed camera. It is revealed that the essential effect of the external longitudinal magnetic field on laser-MIG hybrid welding arc/plasma is to make the arc and the coupling process more stable. Through analyzing the position of arc and laser-induced plasma and the mechanical model of charged particles, the energy coupling mechanics of arc and plasma under this welding condition has been proposed. The results showed that an application of a magnetic field can change the arc shape from pyramidal and static to spiral and rotational with high-speed stage and make the arc root diameter increase. It has also been found that the external longitudinal magnetic field can obviously enhance the stability of the process during laser-arc hybrid welding under the best magnetic induction intensity, which promoted efficient coupling and formed a good weld.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Steen WM (1980) Arc augmented laser processing of materials. J Appl Phys 51(13):5636–5641

    Article  Google Scholar 

  2. Tusek J, Suban M (1999) Hybrid welding with arc and laser beam. Sci Technol Weld Join 4(5):308–311. doi:10.1179/136217199101537923

    Article  Google Scholar 

  3. Page CJ, Devermann T, Biffin J, Blundell N (2002) Plasma augmented laser welding and its applications. Sci Technol Weld Join 7(1):1–10. doi:10.1179/136217102225001313

    Article  Google Scholar 

  4. Bagger C, Olsen FO (2005) Review of laser hybrid welding. J Laser Appl 17(1):2–14. doi:10.2351/1.1848532

    Article  Google Scholar 

  5. Rao ZH, Liao SM, Tsai HL (2011) Modelling of hybrid laser-GMA welding: review and challenges. Sci Technol Weld Join 16(4):300–305. doi:10.1179/1362171811y.0000000022

    Article  Google Scholar 

  6. Blinkov VA, Sheninkin MZ, Abralv MA (1975) Grains of solidifying metal refined under vibrations. Autom Weld 28(11):11–12

    Google Scholar 

  7. Chang YL, Liu XL, Lu L, Babkin AS, Lee BY, Gao F (2014) Impacts of external longitudinal magnetic field on arc plasma and droplet during short-circuit GMAW. Int J Adv Manuf Technol 70(9–12):1543–1553. doi:10.1007/s00170-013-5403-1

    Article  Google Scholar 

  8. Luo J, Jia CS, Wang YS, Xue J, Wu YX (2001) Mechanism of the gas tungsten-arc welding in longitudinal magnetic field controlling—I. Property of the arc. Acta Metall Sin 37(2):212–216

    Google Scholar 

  9. Zhu S, Wang Q, Yin F, Liang Y, Wang X, Li X (2011) Research on MIG welding arc under alternating longitudinal magnetic field. Trans Mater Heat Treat 32(11):23–27

    Google Scholar 

  10. Chang YL, Liu MX, Lu L, Babkin AS, Lee BY (2015) The influence of longitudinal magnetic field on the CO2 arc shape. Plasma Sci Technol 17(4):321–326. doi:10.1088/1009-0630/17/4/11

    Article  Google Scholar 

  11. Hua AB, Yin SY, Chen SJ, Bai SJ, Zhang XL (2010) Behavior of arc and drop transfer of MAG welding controlled by longitudinal magnetic field. Chin J Mech Eng 46(14):95–100

    Article  Google Scholar 

  12. Wu CS, Yang FZ, Gao JQ (2014) Effect of external magnetic field on weld pool flow conditions in high-speed gas metal arc welding. Proc IMechE B: J Eng Manuf 233:1–6

    Google Scholar 

  13. Tse HC, Man HC, Yue TM (1999) Effect of magnetic field on plasma control during CO2 laser welding. Opt Laser Technol 31(5):363–368. doi:10.1016/s0030-3992(99)00080-8

    Article  Google Scholar 

  14. Tse HC, Man HC, Yue TM (1999) Effect of electric and magnetic fields on plasma control during CO2 laser welding. Opt Lasers Eng 32(1):55–63. doi:10.1016/s0143-8166(99)00045-7

    Article  Google Scholar 

  15. Wang C, Chen W, Peng Y, Bao G, Tian Z (2002) Simple plasma current model and its application in laser beam welding. J Tsinghua University(Science and Technology) 42(4):488–490

    Google Scholar 

  16. Yang DC, Liu JH (2001) Effect of outer magnetic field on laser beam welding penetration depth. Laser Technol 25(5):347–350

    Google Scholar 

  17. Bachmann M, Avilov V, Gumenyuk A, Rethmeier M (2013) About the influence of a steady magnetic field on weld pool dynamics in partial penetration high power laser beam welding of thick aluminium parts. Int J Heat Mass Transf 60:309–321. doi:10.1016/j.ijheatmasstransfer.2013.01.015

    Article  Google Scholar 

  18. Chen MH, Liu LM (2011) Study on attraction of laser to arc plasma in laser-TIG hybrid welding on magnesium alloy. IEEE Trans Plasma Sci 39(4):1104–1109. doi:10.1109/tps.2011.2109739

    Article  Google Scholar 

  19. Xu GX, Wu CS, Qin GL, Wang XY, Lin SY (2011) Adaptive volumetric heat source models for laser beam and laser plus pulsed GMAW hybrid welding processes. Int J Adv Manuf Technol 57(1–4):245–255. doi:10.1007/s00170-011-3274-x

    Article  Google Scholar 

  20. Li ZY, Srivatsan TS, Li Y, Zhang WZ (2013) Coupling of laser with plasma arc to facilitate hybrid welding of metallic materials: a review. J Mater Eng Perform 22(2):384–395. doi:10.1007/s11665-012-0280-6

    Article  Google Scholar 

  21. Zhang W, Hua XM, Liao W, Li F, Wang M (2014) Behavior of the plasma characteristic and droplet transfer in CO2 laser-GMAW-P hybrid welding. Int J Adv Manuf Technol 72(5–8):935–942. doi:10.1007/s00170-014-5731-9

    Article  Google Scholar 

  22. Gao ZG, Wu YX, Huang J (2009) Analysis of weld pool dynamic during stationary laser-MIG hybrid welding. Int J Adv Manuf Technol 44(9–10):870–879. doi:10.1007/s00170-008-1896-4

    Article  Google Scholar 

  23. Seyffarth P, Krictsun LV (2011) Laser-arc processes and their applications in welding and material treatment. Taylor & Francis, New York

    Google Scholar 

  24. Stute U, Kling R, Hermsdorf J (2007) Interaction between electrical arc and Nd: YAG laser-MIG hybrid welding. CIRP Ann 56(1):197–200

    Article  Google Scholar 

  25. Chen SJ, Meng DY, Su ZW, Jiang F, Lu YS (2014) Effects of longitudinal magnetic field on non-consumable gas shielded arc welding. Trans China Weld Inst 35(10):5–8

    Google Scholar 

  26. Chang YL, Yang X, Li DY, Li D (2010) Arc shapes of TIG welding in a longitudinal magnetic field. Trans China Weld Inst 31(4):49–52

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunming Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Zhao, Z., Wang, C. et al. The effect of external longitudinal magnetic field on laser-MIG hybrid welding. Int J Adv Manuf Technol 85, 1735–1743 (2016). https://doi.org/10.1007/s00170-015-8035-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-015-8035-9

Keywords

Navigation