Skip to main content
Log in

Research on the influence of laser process parameters on the quality of magnesium alloy laser cutting

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

A high-power fiber laser was used to cut AZ31B magnesium alloy. The effects of laser cutting speed, assisted air pressure, and defocus on cutting quality were studied systematically. Scanning electron microscope and ultra-depth-of-field three-dimensional microscope were used to observe the morphology of kerf and the cutting surface. The results show that the kerf width at the straight line and the kerf width at the sharp corner always keep the synchronous change law. The cutting surface can usually be divided into three areas: top area, scour area, and stripe area. The change of the area of the three regions has an important influence on the roughness value of the cutting surface. Studying the variation of roughness by studying the variation of three areas is applicable to laser cutting speed and assisted air pressure, but not to defocus. The slag height decreases from 75.87 to 46.83 μm with the increase of laser cutting speed. The slag height decreases rapidly to 52.88 μm and then increases slowly to 61.74 μm with the change of defocus. The slag height decreases rapidly from 58.37 to 24.81 μm with the increase of assisted air pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this work are available within the article. Raw data that support the findings of the study are available from the corresponding author, upon reasonable request.

References

  1. Ma X-C, Jin S-Y, Wu R-Z, Wang J-X, Wang G-X, Krit B, Betsofen S (2021) Corrosion behavior of Mg−Li alloys: a review. Trans Nonferrous Metals Soc China 31(11):3228. https://doi.org/10.1016/s1003-6326(21)65728-x

    Article  Google Scholar 

  2. Del Guercio G, McCartney DG, Aboulkhair NT, Robertson S, Maclachlan R, Tuck C, Simonelli M (2022) Cracking behaviour of high-strength AA2024 aluminium alloy produced by Laser Powder Bed Fusion. Additive Manuf 54. https://doi.org/10.1016/j.addma.2022.102776

  3. Shin H, Kim D (2018) Cutting thin glass by femtosecond laser ablation. Optics Laser Technol 102: 1. https://doi.org/10.1016/j.optlastec.2017.12.020

  4. Jiang L, Cui X, Jin G, Tian Z, Wen X, Tian H, Wang S (2022) Design and characterization of in-situ TiB reinforced TiB/Ti50Zr25Al15Cu10 non-equiatomic medium-entropy alloy composite coating on magnesium alloy by laser cladding. Optics Laser Technol 156:. https://doi.org/10.1016/j.optlastec.2022.108494

  5. Li X, Wang X, Hu X, Xu C, Shao W, Wu K (2023) Direct conversion of CO2 to graphene via vapor–liquid reaction for magnesium matrix composites with structural and functional properties. J Magnesium Alloys 11(4):1206. https://doi.org/10.1016/j.jma.2021.06.012

    Article  Google Scholar 

  6. Bian N, Li F, Du H, Niu W, Chen Z (2022) Effect mechanism of texture orientation on mechanical properties and Hall-Petch relationship of CVCDE AZ31 magnesium alloy via crystal plastic finite element method (CPFEM). J Alloys Compds 923:. https://doi.org/10.1016/j.jallcom.2022.166248

  7. Chen C, Zheng K, Zhang Y, Gao M (2021) Effect of kerf characteristics on microstructures and properties of laser cutting–welding of AA2219 aluminum alloy. J Mater Res Technol 15:4147. https://doi.org/10.1016/j.jmrt.2021.10.034

    Article  Google Scholar 

  8. Zhang Z, Ma Z, He S, Song G, Liu L (2021) Effect of laser power on the microstructure and mechanical properties of 2319-Al fabricated by wire-based additive manufacturing. J Mater Eng Perform 30(9):6640. https://doi.org/10.1007/s11665-021-05944-5

    Article  Google Scholar 

  9. Han Y, Kong B, Wang J, Fu K, Jin H, Chen J, Wei Y (2022) Effect of laser-arc heat input ratio on the formation, microstructure, and properties of EH36 steel with laser-metal inert gas hybrid welding. J Mater Eng Perform 32(4):1954. https://doi.org/10.1007/s11665-022-07203-7

    Article  Google Scholar 

  10. Niranjan CA, Srinivas S, Ramachandra M (2018) Effect of process parameters on depth of penetration and topography of AZ91 magnesium alloy in abrasive water jet cutting. J Magnesium Alloys 6(4):366. https://doi.org/10.1016/j.jma.2018.07.001

    Article  Google Scholar 

  11. Jin Z-Y, Li N-N, Zhang Q, Yan K, Cui Z-S (2017) Effects of forging parameters on uniformity in deformation and microstructure of AZ31B straight spur gear. Trans Nonferrous Met Soc China 27(10):2172. https://doi.org/10.1016/s1003-6326(17)60243-7

    Article  Google Scholar 

  12. Abbaszadeh Hashemi S, Farhangdoost K, Ma W, Ghahremani Moghadam D, Masoudi Nejad R, Berto F (2022) Effects of tensile overload on fatigue crack growth in AM60 magnesium alloys. Theor Appl Fract Mech 122:. https://doi.org/10.1016/j.tafmec.2022.103573

  13. Nasiri Z, Sarkari Khorrami M, Mirzadeh H, Emamy M (2021) Enhanced mechanical properties of as-cast Mg-Al-Ca magnesium alloys by friction stir processing. Mater Lett 296. https://doi.org/10.1016/j.matlet.2021.129880

  14. Haixiang C, Kun W (2021) Enhanced mechanical, electrochemical, and passive performance of laser-Clad NiCrAl coating by laser remelting. J Mater Eng Perform 30(11):8426. https://doi.org/10.1007/s11665-021-06027-1

    Article  Google Scholar 

  15. Batishcheva KA, Kuznetsov GV, Orlova EG, Vympina YN (2021) Evaporation of colloidal droplets from aluminum–magnesium alloy surfaces after laser-texturing and mechanical processing. Colloids Surf A: Physicochem Eng Aspects 628. https://doi.org/10.1016/j.colsurfa.2021.127301

  16. Khdair AI, Melaibari AA (2023) Experimental evaluation of cut quality and temperature field in fiber laser cutting of AZ31B magnesium alloy using response surface methodology. Opt Fiber Technol 77. https://doi.org/10.1016/j.yofte.2023.103290

  17. Kumar Debta M, Mishra R, Masanta M (2020) Experimental investigation on the machining performance of AZ91D (90% Mg) alloy by wire-cut EDM. Mater Today: Proc 33:5557. https://doi.org/10.1016/j.matpr.2020.03.540

    Article  Google Scholar 

  18. Lei Y, Wang Z, Kang G (2022) Experimental investigation on uniaxial cyclic plasticity of cast AZ91 magnesium alloy. J Magnesium Alloys: https://doi.org/10.1016/j.jma.2021.12.001

  19. Dayal S, Dev Gupta R, Sharma S, Sharma N, Khanna R (2022) Experimental investigations of WEDM process parameters for magnesium alloy AZ31B biomedical material. Mater Today: Proc 62:1392. https://doi.org/10.1016/j.matpr.2021.12.371

    Article  Google Scholar 

  20. Niranjan CA, Srinivas S, Ramachandra M (2018) An experimental study on depth of cut of AZ91 Magnesium Alloy in abrasive water jet cutting. Mater Today: Proc 5(1):2884. https://doi.org/10.1016/j.matpr.2018.01.082

    Article  Google Scholar 

  21. Xiao K, Li M, Li M, Dai R, Hou Z, Qiao J (2022) Femtosecond laser ablation of AZ31 magnesium alloy under high repetition frequencies. Appl Surf Sci 594. https://doi.org/10.1016/j.apsusc.2022.153406

  22. Xue H, Xie W, Liu S, Zhou Y, Peng J, Pan H, Zhang D, Pan F (2022) The formation mechanism of Al-RE tubular phase in AZ80-Ce magnesium alloy by La doping. J Mater Res Technol 18:1105. https://doi.org/10.1016/j.jmrt.2022.03.045

    Article  Google Scholar 

  23. Liu J, Cui Z (2009) Hot forging process design and parameters determination of magnesium alloy AZ31B spur bevel gear. J Mater Process Technol 209(18–19):5871. https://doi.org/10.1016/j.jmatprotec.2009.06.015

    Article  Google Scholar 

  24. Chen X, Li X, Ning F, Liao Q, Le Q, Zhou X, Yu F (2022) The hot rolling deformation performance of as-cast AZ80 magnesium alloy after ultrasonic processing. J Mater Res Technol 17:1707. https://doi.org/10.1016/j.jmrt.2022.01.116

    Article  Google Scholar 

  25. Liu H, Gu J, Tong Z, Yang D, Yang H, Ren X (2022) Improving stress corrosion cracking resistance of AZ31 magnesium alloy in Hanks’ solution via phosphate conversion with laser shock peening pretreatment. Mater Today Commun 31. https://doi.org/10.1016/j.mtcomm.2022.103678

  26. Nagesh S, Narasimha Murthy HN, Pal R, Krishna M, Satyanarayana BS (2015) Influence of nanofillers on the quality of CO2 laser drilling in vinylester/glass using orthogonal array experiments and grey relational analysis. Opt Laser Technol 69:23. https://doi.org/10.1016/j.optlastec.2014.12.002

    Article  Google Scholar 

  27. Zhang X, Bian S, Zhao P, Ding X, Li Y, Cao Z (2022) Investigation on pore formation in pulsed laser spot welding of AZ31 magnesium alloy. Opt Laser Technol 149. https://doi.org/10.1016/j.optlastec.2022.107894

  28. Lutey AHA, Ascari A, Fortunato A, Romoli L (2017) Long-pulse quasi-CW laser cutting of metals. Int J Adv Manuf Technol 94(1–4):155. https://doi.org/10.1007/s00170-017-0913-x

    Article  Google Scholar 

  29. Tao T, Liu J, Zhou D, Li C, Li H (2021) Microstructure and mechanical properties of laser welding of AZ31B magnesium alloy and DP590 dual-phase steel with concave groove joint. J Manuf Process 72:227. https://doi.org/10.1016/j.jmapro.2021.10.024

    Article  Google Scholar 

  30. Jiang H, An L, Li F, Zhang P, Dong P, Li S, Wang Y, Zhao S (2023) Numerical and experimental study on the rheo-extrusion process of 2A50 aluminium alloy miniature gear. J Mater Res Technol 24:1468. https://doi.org/10.1016/j.jmrt.2023.03.086

    Article  Google Scholar 

  31. Kotadiya DJ, Kapopara JM, Patel AR, Dalwadi CG, Pandya DH (2018) Parametric analysis of process parameter for laser cutting process on SS-304. Mater Today: Proc 5(2):5384. https://doi.org/10.1016/j.matpr.2017.12.124

    Article  Google Scholar 

  32. Sealy MP, Guo YB, Liu JF, Li C (2016) Pulsed laser cutting of magnesium-calcium for biodegradable stents. Proc CIRP 42:67. https://doi.org/10.1016/j.procir.2016.02.190

    Article  Google Scholar 

  33. Yu W, Chen D, Tian L, Zhao H, Wang X (2019) Self-lubricate and anisotropic wear behavior of AZ91D magnesium alloy reinforced with ternary Ti2AlC MAX phases. J Mater Sci Technol 35(3):275. https://doi.org/10.1016/j.jmst.2018.07.003

    Article  Google Scholar 

  34. Xu J, Sun G, Zhai C, Tian J, Nie X, Yu H (2022) Study on the heat-affected zone, microstructure, and surface quality of TB8 titanium alloy treated by laser-assisted micromachining. J Mater Eng Perform 31(4):2978. https://doi.org/10.1007/s11665-021-06431-7

    Article  Google Scholar 

  35. Ruano OA, Álvarez-Leal M, Orozco-Caballero A, Carreño F (2022) Superplasticity of a friction stir processed overaged WE54 magnesium alloy. J Magnesium Alloys 10(11):3156. https://doi.org/10.1016/j.jma.2022.02.008

    Article  Google Scholar 

  36. Žagar S, Soyama H, Grum J, Šturm R (2022) Surface integrity of heat treatable magnesium alloy AZ80A after cavitation peening. J Mater Res Technol 17:2098. https://doi.org/10.1016/j.jmrt.2022.01.156

    Article  Google Scholar 

  37. Wang D, Liu S, Wu R, Zhang S, Wang Y, Wu H, Zhang J, Hou L (2021) Synergistically improved damping, elastic modulus and mechanical properties of rolled Mg-8Li-4Y–2Er-2Zn-0.6Zr alloy with twins and long-period stacking ordered phase. J Alloys Compd 881. https://doi.org/10.1016/j.jallcom.2021.160663

  38. Alavi SH, Harimkar SP (2015) Ultrasonic vibration-assisted continuous wave laser surface drilling of materials. Manuf Lett 4:1. https://doi.org/10.1016/j.mfglet.2015.01.002

    Article  Google Scholar 

Download references

Funding

This material is based upon work supported by the National Natural Science Foundation of China (grant no. 52371102), Natural Science Foundation of Heilongjiang Province of China (grant no. LH2022C009).

Author information

Authors and Affiliations

Authors

Contributions

Data curation: Zhe Wu; methodology: Yang Zhang and Yulong Liu; writing—original draft: Zhe Wu; writing—review and editing: Yulong Liu, Chengwei Li, and Zhen Zhang. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Yang Zhang.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Z., Liu, Y., Wang, S. et al. Research on the influence of laser process parameters on the quality of magnesium alloy laser cutting. Int J Adv Manuf Technol (2024). https://doi.org/10.1007/s00170-024-13718-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00170-024-13718-1

Keywords

Navigation