Skip to main content
Log in

A review of intelligent approaches for designing dynamic and robust layouts in flexible manufacturing systems

  • CRITICAL REVIEW
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Facility layout problem is associated with the arrangement of facilities in a plant. It is a critical issue in the early stages of designing a manufacturing system because it affects the total manufacturing cost significantly. Dynamic and robust layouts are flexible enough to cope with fluctuations and uncertainties in product demands in volatile environment of flexible manufacturing systems. Since the facility layout is a hard combinatorial optimization problem, intelligent approaches are the most appropriate methods for solving the large size of this problem in reasonable computational time. In this paper, first of all, dynamic and robust layouts are surveyed. After a quick look of different mathematical models, including quadratic assignment, quadratic set covering, mixed integer programming, and graph theoretic models, the various solution methods especially intelligent approaches along with their advantages and disadvantages are surveyed. Finally, after review of hybrid algorithms, the conclusion of this paper is reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdelghani S (1995) Simulated annealing for manufacturing systems layout design. Eur J Oper Res 82:592–614

    Article  MATH  Google Scholar 

  2. Abdinnour HS, Hadley SW (2000) Tabu search based heuristics for multi-floor layout. Int J Prod Res 38(2):365–383

    Article  MATH  Google Scholar 

  3. Aiello G, Enea M (2001) Fuzzy approach to the robust facility layout in uncertain production environments. Int J Prod Res 39(18):4089–4101

    Article  MATH  Google Scholar 

  4. Ashtiani B, Aryanezhad MB, Farhang Moghaddam B (2007) Multi-start simulated annealing for dynamic plant layout problem. J Ind Eng Int 3(4):44–50

    Google Scholar 

  5. Azadivar F, Wang J (2000) Facility layout optimization using simulation and genetic algorithms. Int J Prod Res 38(17):4369–4383

    Article  MATH  Google Scholar 

  6. Balakrishnan J, Cheng CH (1998) Dynamic layout algorithms: a state-of-the-art survey. Int J Manag Sci 26(4):507–521

    Google Scholar 

  7. Balakrishnan J, Cheng CH (2000) Genetic search and the dynamic layout problem. Comput Oper Res 27(6):587–593

    Article  MATH  Google Scholar 

  8. Balakrishnan J, Cheng CH, Conway DG (2000) An Improved pair-wise exchange heuristic for the dynamic plant layout problem. Int J Prod Res 38(13):3067–3077

    Article  Google Scholar 

  9. Balakrishnan J, Cheng CH, Conway DG, Lau CM (2003) A hybrid genetic algorithm for the dynamic plant layout problem. Int J Prod Econ 86:107–120

    Article  Google Scholar 

  10. Balakrishnan J, Jacobs FR, Venkataramanan MA (1992) Solutions for the constrained dynamic facility layout problem. Eur J Oper Res 57:280–286

    Article  MATH  Google Scholar 

  11. Bashiri M, Dehghan E (2010) Optimizing a multiple criteria dynamic layout problem using a simultaneous data envelopment analysis modelling. Int J Comp Sci Eng 2(1):48–55

    Google Scholar 

  12. Baykasoglu A, Dereli T, Sabuncu I (2006) An ant colony algorithm for solving budget constrained and unconstrained dynamic facility layout problems. Omega 34(4):385–396

    Article  Google Scholar 

  13. Baykasogylu A, Gindy NNZ (2001) A simulated annealing algorithm for dynamic layout problem. Comput Oper Res 28:1403–1426

    Article  MathSciNet  Google Scholar 

  14. Bazara MS (1975) Computerised layout design: a branch and bound approach. AIIE Trans 7(4):432–437

    Article  MathSciNet  Google Scholar 

  15. Bazaraa MS, Sherali HD (1980) Bender’s partitioning scheme applied to a new formulation of the quadratic assignment problem. Oaval Res Logistics Quart 27(1):29–41

    Article  MathSciNet  MATH  Google Scholar 

  16. Benjaafar S, Sheikhzadeh M (2000) Design of flexible layouts. IIE Trans 32:309–322

    Google Scholar 

  17. Berna HU, Attila IA (2009) A clonal selection algorithm for dynamic facility layout problems. J Manuf Syst 28:123–131

    Article  Google Scholar 

  18. Bondy JA, Murty USR (1977) Graph theory with applications. The Mac-Millan Press, London

    MATH  Google Scholar 

  19. Braglia M, Simone Z, Zavanella L (2005) Layout design in dynamic environments: analytical issues. Int Trans Oper Res 12:1–19

    Article  MATH  Google Scholar 

  20. Chang M, Ohkura K, Ueda K, Sugiyama M (2002) A symbiotic evolutionary algorithm for dynamic facility layout problem. Proc Congress on Evolut Computation 2:1745–1750

    Google Scholar 

  21. Chen G, Rogers J (2009). Managing dynamic facility layout with multiple objectives. In: PICMET Proceedings, Portland, Oregon USA, August 2–6. pp 1175–1184

  22. Chung YK (1999) A neuro-based expert system for facility layout construction. J Intell Manuf 10:359–385

    Article  Google Scholar 

  23. Clerc M, Kennedy J (2002) The particle swarm-explosion, stability, and conver-gence in a multidimensional and complex space. IEEE Transactions on Evolu-tionary Computing 6(1)

  24. Conway DG, Venkataramanan MA (1994) Genetic search and the dynamic facility layout problem. Comput Oper Res 21(8):955–960

    Article  MATH  Google Scholar 

  25. Corne D, Dorigo M, Glover F (1999) The ant colony optimization meta-heuristic, new ideas in optimization. McGraw-Hill, London, pp 11–32

    Google Scholar 

  26. Corry P, Kozan E (2004) Ant colony optimisation for machine layout problems. Comput Optim Appl 28:287–310

    Article  MathSciNet  MATH  Google Scholar 

  27. Deb SK, Bhattacharyya B (2005) Fuzzy decision support systems for manufacturing facilities layout planning. Decis Support Syst 40:305–314

    Article  Google Scholar 

  28. Dong M, Wu C, Hou F (2009) Shortest path based simulated annealing algorithm for dynamic facility layout problem under dynamic business environment. Exp Syst Appl 36:11221–11232

    Article  Google Scholar 

  29. Dorigo M, Stützle T (2004) Ant colony optimization. The MIT Press, Cambridge

    Book  MATH  Google Scholar 

  30. Drezner Z (2008) Extensive experiments with hybrid genetic algorithms for the solution of the quadratic assignment problem. Comput Oper Res 35:717–736

    Article  MathSciNet  MATH  Google Scholar 

  31. Drira A, Pierreval H, Hajri-Gabouj S (2007) Facility layout problems: a survey. Annu Rev Control 31:255–267

    Article  Google Scholar 

  32. Drolet JR (1989). Scheduling Virtual Cellular Manufacturing Systems. Ph.D. thesis, School of Industrial Engineering, Purdue University, West Lafayette, Indiana

  33. Dunker T, Radonsb G, Westkampera E (2005) Combining evolutionary computation and dynamic programming for solving a dynamic facility layout problem. Eur J Oper Res 165(1):55–69

    Article  MATH  Google Scholar 

  34. Dweiri F, Meier FA (1996) Application of fuzzy decision-making in facilities layout planning. Int J Prod Res 34(11):3207–3225

    Article  MATH  Google Scholar 

  35. Enea M, Galante G, Panascia E (2005) The facility layout problem approached using a fuzzy model and a genetic search. J Intell Manuf 16:303–316

    Article  Google Scholar 

  36. Engelbrecht AP (2005) Fundamentals of computational swarm intelligence. Wiley, Chichester

    Google Scholar 

  37. Engin O, Döyen A (2004) A new approach to solve hybrid flow shop scheduling problems by artificial immune system. Fut Gen Comput Syst 20:1083–1095

    Article  Google Scholar 

  38. Erel E, Ghosh JB, Simon JT (2003) New heuristic for the dynamic layout problem. J Oper Res Soc 54(12):1275–1282

    Article  MATH  Google Scholar 

  39. Evans GW, Wilhelm MR, Karwowski W (1987) A layout design heuristic employing the theory of fuzzy sets. Int J Prod Res 25(10):1431–1450

    Article  MATH  Google Scholar 

  40. Feo T, Resende MGC (1995) Greedy randomized adaptive search procedures. Journal of Global Optimization 6:109–133

    Article  MathSciNet  MATH  Google Scholar 

  41. Feo TA, Resende MGC (1989) A probabilistic heuristic for a computationally difficult set covering problem. Oper Res Lett 8:67–71

    Article  MathSciNet  MATH  Google Scholar 

  42. Ficko M, Brezocnik M, Balic J (2004) Designing the layout of single- and multiple-rows flexible manufacturing system by genetic algorithms. Journal of Materials Processing Technology 157–158:150–158

    Article  Google Scholar 

  43. Fisher EL, Nof SY (1984). FADES : Knowledge-based facility design. In: Proceeding of international industrial engineering conference, Chicago. pp 74–85

  44. Foulds L (1991) Graph theory and applications. Springer, Berlin

    Google Scholar 

  45. Foulds LR, Robinson DF (1978) Graph theoretic heuristic for the plant layout problem. Int J Prod Res 16:27–37

    Article  Google Scholar 

  46. Francis RL, McGinnis LF, White JA (2009) Facility layout and location, an analytical approach, 2nd edn. Prentice-Hall, New Delhi (110001)

    Google Scholar 

  47. Gambardella LM, Taillard ED, Dorigo M (1999) Ant colonies for the quadratic assignment problem. J Oper Res Soc 50:167–176

    MATH  Google Scholar 

  48. Gen M, Chenge R (1997) Genetic algorithms and engineering design. Ashikaga Institute of Technology, Ashikage

    Google Scholar 

  49. Gen M, Ida K, Cheng C (1995) Multi row machine layout problem in fuzzy environment using genetic algorithms. Comput Ind Eng 29(1–4):519–523

    Article  Google Scholar 

  50. George JK, Yuan B (1995) Fuzzy sets and fuzzy logic, theory and application. Prentice-Hall, New Jersey

    Google Scholar 

  51. Gilmore PC (1962) Optimal and suboptimal algorithms for the quadratic assignment problem. J Soc Ind Appl Math 10:305–313

    Article  MathSciNet  MATH  Google Scholar 

  52. Glover F (1989) Tabu Search, Part I. ORSA J Comput 1:190–206

    Article  MathSciNet  MATH  Google Scholar 

  53. Grasśe PP (1959) La reconstruction du nid et les coordinations interindividuelles chez Bellicositermes Natalensis et Cubitermes sp. La th´eorie de la stigmergie: Essai d’interpr´etation du comportement des termites constructeurs. Insectes Sociaux 6:41–81

    Article  Google Scholar 

  54. Grobelny J (1987) On one possible ‘fuzzy’ approach to facilities layout problems. Int J Prod Res 25(8):1123–1141

    MATH  Google Scholar 

  55. Grobelny J (1987) The fuzzy approach to facilities layout problems. Fuzzy Sets and Systems 23(2):175–190

    Article  MathSciNet  MATH  Google Scholar 

  56. Grobenlyn J (1998) Linguistic pattern method for a workstation layout analysis. Int J Prod Res 26:1779–1798

    Google Scholar 

  57. Harary F (1969) Graph Theory. Addison-Wesley, Reading

    Google Scholar 

  58. Harraz N (1997). A knowledge-based decision support system for facility layout. M.Sc. thesis, Alexandria University

  59. Hassan M, Hogg G (1987) A review of graph theory applications to the facilities layout problem. Omega 15:291–300

    Article  Google Scholar 

  60. Hassan MN, Shahin G (2007) A survey of meta-heuristic solution methods for the quadratic assignment problem. Appl Math Sci 1(46):2293–2312

    MATH  Google Scholar 

  61. Heragu SS (1997) Facilities Design, 1st edn. PWS Publishing Company, Boston

    Google Scholar 

  62. Heragu SS, Kusiak A (1990) Machine layout: an optimization and knowledge-based approach. Int J Prod Res 28(4):615–635

    Article  Google Scholar 

  63. Holland J (1975) Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor

    Google Scholar 

  64. Hopfield JJ, Tank DW (1985) Neural computation of decisions in optimization problems. Biol Cybern 52:141–152

    MathSciNet  MATH  Google Scholar 

  65. Hu GH, Chen YP, Zhou ZD, Fang HC (2007) A genetic algorithm for the inter-cell layout and material handling system design. Int J Adv Manuf Technol 34:1153–1163

    Article  Google Scholar 

  66. Huang SH, Zhang H (1995) Neural-expert hybrid approach for intelligent manufacturing:a survey. Comput Ind 26:107–126

    Article  Google Scholar 

  67. Huntley C, Brown D (1991) A parallel heuristic for quadratic assignment problems. Comp Ops Res 18(3):275–289

    Article  MATH  Google Scholar 

  68. Irani SA, Cavalier TM, Cohen PH (1993) Virtual manufacturing cells: exploiting layout design and intercell flows for the machine sharing problem. Int J Prod Res 31(4):791–810

    Article  Google Scholar 

  69. Irappa BH, Madhusudanan PV (2008). Development of a heuristic for layout formation and design of robust layout under dynamic demand. In: Proceedings of the international conference on digital factory, ICDF 2008, August 11–13. pp 1398–1405

  70. Jeong SJ, Kim KS, Lee YH (2009) The efficient search method of simulated annealing using fuzzy logic controller. Exp Syst Appl 36:7099–7103

    Article  Google Scholar 

  71. Ji P, Yongzhong W, Haozhao L (2006). A solution method for the quadratic assignment problem (QAP). The sixth international symposium on operations research and its applications (ISORA’06) Xinjiang, China, August 8–12. pp 106–117

  72. Kaku BK, Mazzola JB (1997) A tabu-search heuristic for the dynamic plant layout problem. INFORMS J Comput 9(4):374–384

    Article  MATH  Google Scholar 

  73. Kaufman L, Broeckx F (1978) An algorithm for the quadratic assignment problem using Benders’ decomposition. Eur J Oper Res 2:204–211

    Article  Google Scholar 

  74. Kennedy J, Eberhart RC (1995). Particle swarm optimization. In Proceedings of the IEEE international conference on neural networks. pp 1942–1948

  75. Kirkpatrick F, Gelatt C, Vecci M (1983) Optimization by simulated annealing. Science Magazine 220(4598):671–680

    MATH  Google Scholar 

  76. Kochhar JS, Heragu SS (1999) Facility layout design in a changing environment International. J Prod Res 37(11):2429–2446

    Article  MATH  Google Scholar 

  77. Komarudin, Kuan YW (2010) Applying ant system for solving unequal area facility layout problems. Eur J Oper Res 202:730–746

    Article  MATH  Google Scholar 

  78. Koopmans TC, Beckman M (1957) Assignment problems and the location of economic activities. Econometric 25:53–76

    Article  MathSciNet  MATH  Google Scholar 

  79. Kouvelis P, Kiran AS (1991) Single and multiple period layout models for automated manufacturing systems. Eur J Oper Res 52:300–314

    Article  MATH  Google Scholar 

  80. Kouvelis P, Kuawarwala AA, Gutierrez GJ (1992) Algorithms for robust single and multiple period layout planning for manufacturing systems. Eur J Oper Res 63:287–303

    Article  MATH  Google Scholar 

  81. Krishnan KK, Cheraghi SH, Nayak CN (2006) Dynamic From-Between Chart: a new tool for solving dynamic facility layout problems. Int J Ind Syst Eng 1(1/2):182–200

    Google Scholar 

  82. Krishnan KK, Cheraghi SH, Nayak CN (2008) Facility layout design for multiple production scenarios in a dynamic environment. Int J Ind Syst Eng 3(2):105–133

    Google Scholar 

  83. Krishnan KK, Jaafari AA, Sanpour MA, Hojabri H (2009) A mixed integer programming formulation for multifloor Layout. African J Business Manag 3(10):616–620

    Google Scholar 

  84. Kristina L, Galstyan A (2001). A general methodology for mathematical analysis of multiagent systems. Technical Report ISI-TR-529. University of California, Information Sciences Institute

  85. Kulturel-Konak S (2007) Approaches to uncertainties in facility layout problems: perspectives at the beginning of the 21st century. J Intell Manuf 18:273–284

    Article  Google Scholar 

  86. Kulturel-Konak S, Smith AE, Norman BA (2004) Layout optimization considering production uncertainty and routing flexibility. Int J Prod Res 42(21):4475–4493

    Article  MATH  Google Scholar 

  87. Kulturel-Konak S, Smith AE, Norman BA (2007) Bi-objective facility expansion and relayout considering monuments. IIE Trans 39:747–761

    Article  Google Scholar 

  88. Kumara SR, Kashyap RL (1988) Application of expert systems and pattern recognition methodologies to facilities layout planning. Int J Prod Res 26:905–930

    Article  Google Scholar 

  89. Kusiak A, Heragu S (1987) The facility layout problem. Eur J Operation Res 29:229–251

    Article  MathSciNet  MATH  Google Scholar 

  90. Lacksonen TA (1994) Static and dynamic layout problems with varying areas. J Oper Res Soc 45(1):59–69

    MATH  Google Scholar 

  91. Lacksonen TA, Enscore EE (1993) Quadratic assignment algorithms for the dynamic layout problem. Int J Prod Res 31(3):503–517

    Article  Google Scholar 

  92. Lawler EL (1963) The quadratic assignment problem. Manag Sci 9:586–599

    Article  MathSciNet  MATH  Google Scholar 

  93. Lee YH, Lee MH (2002) A shape-based block layout approach to facility layout problems using hybrid genetic algorithm. Comput Ind Eng 42:237–248

    Article  MATH  Google Scholar 

  94. Leonardo C, Marcos RPB, Lucas AM (1998) A solution to the facility layout problem using simulated annealing. Comput Ind 36:125–132

    Article  Google Scholar 

  95. Li Y, Pardalos PM, Resende M (1994). A greedy randomized adaptive search procedure for the quadratic assignment problem. In: P. M. Pardalos and H. Wolkowicz (eds) Quadratic assignment and related problems, vol 6. DIMACS. Series in Discrete Mathematics and Theoretical Computer Science, AMS. pp 237–261

  96. Liang LY, Chao WC (2008) The strategies of tabu search technique for facility layout optimization. Autom Constr 17:657–669

    Article  Google Scholar 

  97. Liao SH (2005) Expert system methodologies and applications-a decade review from 1995 to 2004. Expert Syst Appl 28:93–103

    Article  Google Scholar 

  98. Liggett RS (1981) The quadratic assignment problem: an experimental evaluation of solution strategies. Manag Sci 27:442–458

    Article  MathSciNet  MATH  Google Scholar 

  99. Liu H, Abraham A (2007) An hybrid fuzzy variable neighborhood particle swarm optimization algorithm for solving quadratic assignment problems. J Univ Comp Sci 13(7):1032–1054

    Google Scholar 

  100. Liu Q (2004). A sequence-pair and mixed integer programming based methodology for the facility layout problem. Ph.D. thesis, Virginia Tech, Blacksburg,Virginia

  101. Loiola EM, Abreu NMM (2007) A survey for the quadratic assignment problem. Eur J Oper Res 176:657–690

    Article  MATH  Google Scholar 

  102. Mahdi AH, Amet H, Portman MC (1998) Physical layout with minimization of the transport cost (Research Internal Report). LORIA, Nancy

    Google Scholar 

  103. Malakooti B, Tsurushima (1989) An expert system using priorities for solving multiple-criteria facility layout problems. Int J Prod Res 27(5):793–808

    Article  Google Scholar 

  104. Maniezzo V, Colorni A (1999) The ant system applied to the quadratic assignment problem. IIE Trans Knowledge Data Eng 11(5):769–778

    Article  Google Scholar 

  105. Marco D, Mauro B, Thomas SU (2006) Ant colony optimization: artificial ants as a computational intelligence technique. IEEE Comput Intell Mag 1:28–39

    Google Scholar 

  106. Marco D, Vittorio M, Alberto C (1996) The ant system:optimization by a colony of cooperating agents. IEEE Trans Syst, Man, and Cybernetics—Part B 26(1):1–13

    Google Scholar 

  107. Marvin AA, Sukran NK, Basheer MK (2006) An empirical comparison of tabu search, simulated annealing, and genetic algorithms for facilities location problems. Int J Prod Econ 103:742–754

    Article  Google Scholar 

  108. Mavridou T, Pardalos PM (1997) Simulated annealing and genetic algorithms for the facility layout problem. A Survey Comput Optimization Appl 7:111–126

    Article  MathSciNet  MATH  Google Scholar 

  109. Mcculloch, W., & Pitts, W. (1992). Artificial neural networks technology. Technical report data and analysis center for software (DACS), New York, USA

  110. McKendall AR, Shang J (2006) Hybrid ant systems for the dynamic facility layout problem. Comput Oper Res 33:790–803

    Article  MathSciNet  MATH  Google Scholar 

  111. McKendall AR, Shang J, Kuppusamy S (2006) Simulated annealing heuristics for the dynamic facility layout problem. Comput Oper Res 33:2431–2444

    Article  MathSciNet  MATH  Google Scholar 

  112. McKendall JAR (2008) Improved tabu search heuristics for the dynamic space allocation problem. Comput Oper Res 35:3347–3359

    Article  MATH  Google Scholar 

  113. McKendall JAR, Hakobyan A (2010) Heuristics for the dynamic facility layout problem with unequal-area departments. Eur J Oper Res 201:171–182

    Article  MATH  Google Scholar 

  114. McLean CR, Bloom HM, Hopp TH (1982). The virtual manufacturing cell. In: Proceedings of the 4th IFAC/IFIP conference on information control problems in manufacturing technology, Gaithersburg, MD. pp 1–9

  115. Meller RD, Gau KY (1996) The facility layout problem: recent and emerging trends and perspectives. J Manuf Syst 15(5):351–366

    Article  Google Scholar 

  116. Metropolis N, Rosenbluth A, Rosenbluth M, Teller A, Teller E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21:1087–1092

    Article  Google Scholar 

  117. Mir M, Imam MH (2001) A hybrid optimization approach for layout design of unequal-area facilities. Comput Ind Eng 39(1–2):49–63

    Article  Google Scholar 

  118. Montreuil B (1990). A modeling framework for integrating layout design and flow network design. In: Proceedings of the material handling research colloquium, Hebron, KY, pp 43–58

  119. Montreuil B, Laforge A (1992) Dynamic layout design given a scenario tree of probable futures. Eur J Oper Res 63(271):286

    Google Scholar 

  120. Montreuil B, LeFrancois P, Marcotte S, Venkatadri U (1993). Holographic layout of manufacturing systems operating in chaotic environments. Technical Report 93–53, Document de Recherche GRGL, Faculte des Sciences de l‘Administration, Universite Laval, Quebec.

  121. Montreuil B, Venkatadri U, Rardin RL (1999) Fractal layout organization for job shop environments. Int J Prod Res 37(3):501–521

    Article  MATH  Google Scholar 

  122. Ning X, Lam KC, Lam MCK (2010) Dynamic construction site layout planning using max-min ant system. Autom Constr 19:55–65

    Article  Google Scholar 

  123. Norman BA, Smith AE (2006) A continuous approach to considering uncertainty in facility design. Comput Oper Res 33:1760–1775

    Article  MATH  Google Scholar 

  124. Norman MG, Moscato P (1989). A competitive and cooperative approach to complex combinatorial search. In: Caltech concurrent computation program, report 826

  125. Palekar US, Batta R, Bosch RM, Elhence S (1992) Modeling uncertainties in plant layout problems. Eur J Oper Res 63:347–359

    Article  MATH  Google Scholar 

  126. Phen CS, Kuan YW (2008) Application of ant colony optimisation algorithms in solving facility layout problems formulated as quadratic assignment problems: a review. Int J Ind Syst Eng 3(6)

  127. Pitsoulis L, Resende MGC (2002) Greedy randomised adaptive search procedures. In: Resende MGC, Pardalos PM (eds) Handbook of applied optimization. Oxford University Press, Oxford, pp 168–181

    Google Scholar 

  128. Poli R, Kennedy J, Blackwell T (2007) Particle swarm optimization—an overview. Swarm Intell 1(1):33–57

    Article  Google Scholar 

  129. Quantrille TE, Liu AA (1991) Artificial Intelligence in chemical engineering. Academic, New York

    Google Scholar 

  130. Ramkumar AS, Ponnambalam SG (2006). Hybrid ant colony system for solving quadratic assignment formulation of machine layout problems. In: Proceedings of the IEEE conference on cybernetics and intelligent systems, Bangkok

  131. Raoot A, Rakshit A (1991) A ‘fuzzy’ approach to facilities lay-out planning. Int J Prod Res 29(4):835–857

    Article  Google Scholar 

  132. Raoot A, Rakshit A (1993) A ‘linguistic pattern’ approach for multiple criteria facility layout problems. Int J Prod Res 31(1):203–222

    Article  Google Scholar 

  133. Resende MGC, Ribeiro CC (2003) Greedy randomised adaptive search procedures. In: Kochenberger G, Glover F (eds) Handbook of metaheuristics. Kluwer, Norwell, pp 216–249

    Google Scholar 

  134. Rezazadeh H, Ghazanfari M, Saidi-Mehrabad M, Sadjadi SJ (2009) An extended discrete particle swarm optimization algorithm for the dynamic facility layout problem. J Zhejiang Univ Sci A 10(4):520–529

    Article  MATH  Google Scholar 

  135. Rodriguez JM, MacPhee FC, Bonham DJ, Bhavsar VC (2004). Solving the quadratic assignment and dynamic plant layout problems using a new hybrid meta-heuristic approach. In: Proceedings of the 18th Annual international symposium on high performance computing systems and applications, Winnipeg, Manitoba, Canada. pp 9–16

  136. Rosenblatt MJ (1986) The dynamics of plant layout. Manag Sci 32(1):76–86

    Article  MATH  Google Scholar 

  137. Rosenblatt MJ, Lee HL (1987) A robustness approach to facilities design. Int J Prod Res 25(4):479–486

    Article  Google Scholar 

  138. Sahin R, Ertogral K, Turkbey O (2010) A simulated annealing heuristic for the dynamic layout problem with budget constraint. Comput Ind Eng. doi:10.1016/j.cie.2010.1004.1013

  139. Samarghandi H, Eshghi K (2010) An efficient tabu algorithm for the single row facility layout problem. Eur J Oper Res 205:98–105

    Article  MathSciNet  MATH  Google Scholar 

  140. Satheesh Kumar RM, Asokan P, Kumanan S (2009) Artificial immune system-based algorithm for the unidirectional loop layout problem in a flexible manufacturing system. Int J Adv Manuf Technol 40:553–565

    Article  Google Scholar 

  141. Scholz D, Petrick A, Domschke W (2009) STaTS: a slicing tree and tabu search based heuristic for the unequal area facility layout problem. Eur J Oper Res 197(1):166–178

    Article  MathSciNet  MATH  Google Scholar 

  142. Singh SP, Sharma RRK (2006) A review of different approaches to the facility layout problems. Int J Adv Manuf Technol 30:425–433

    Article  Google Scholar 

  143. Sirirat M, Peerayuth C (2007) The approximated dynamic programming approach to the dynamic quadratic assignmen problem. Thammasat Int J Sc Tech 12(2), April–June

  144. Smith AE, Norman BA (2000) In: Parmee IC (ed) Evolutionary design of facilities considering production uncertainty. Evolutionary design and manufacture: selected papers from ACDM. Springer, London, pp 175–186

    Google Scholar 

  145. Solimanpur M, Saeedi S, Mahdavi I (2010) Solving cell formation problem in cellular manufacturing using ant-colony-based optimization. Int J Adv Manuf Technol 50:1135–1144

    Article  Google Scholar 

  146. Solimanpur M, Vrat P, Shankar R (2004) Ant colony optimization algorithm to the inter-cell layout problem in cellular manufacturing. Eur J Oper Res 157:592–606

    Article  MathSciNet  MATH  Google Scholar 

  147. Suman B, Kumar P (2006) A survey of simulated annealing as a tool for single and multiobjective optimization. J Oper Res Soc 57:1143–1160

    Article  MATH  Google Scholar 

  148. Surya PS (2009) Solving facility layout problem: three-level tabu search metaheuristic approach. Int J Recent Trends in Eng 1:73–77

    Google Scholar 

  149. Tavakkoli-Moghaddam R, Javadian N, Javadi B, Safaei N (2007) Design of a facility layout problem in cellular manufacturing systems with stochastic demands. Appl Math Comput 184:721–728

    Article  MathSciNet  MATH  Google Scholar 

  150. Teo YT, Ponnambalam SG (2008). A Hybrid ACO/PSO Heuristic to solve single row layout problem. In: 4th IEEE conference on automation science and engineering, Key Bridge Marriott, Washington DC, USA. pp 597–602

  151. Thangavel K, Karnan M, Jeganathan P, Petha Lakshmi A, Sivakumar R, Geetharamani G (2006) Ant colony algorithms in diverse combinational optimization problems—a survey. ACSE J 6(1):7–26

    Google Scholar 

  152. Tompkins JA, White JA, Bozer YA, Tanchoco JMA (2003) Facilities planning. Wiley, New York

    Google Scholar 

  153. Tsuchiya K, Bharitkar S, Takefuji Y (1996) A neural network approach to facility layout problems. Eur J Oper Res 89:556–563

    Article  MATH  Google Scholar 

  154. Urban TL (1992) Computational performance and efficiency of lower-bound procedures for the dynamic facility layout problem. Eur J Oper Res 57:271–279

    Article  MATH  Google Scholar 

  155. Urban TL (1993) A heuristic for the dynamic facility layout problem. IIE Trans 25(4):57–63

    Article  Google Scholar 

  156. Urban TL (1998) Solution procedures for the dynamic facility layout problem. Ann Oper Res 76:323–342

    Article  MATH  Google Scholar 

  157. Urban TL, Chiang WC, Russel RA (2000) The integrated machine allocation and layout problem. International Journal of Production Research 38:2913–2930

    Article  Google Scholar 

  158. Venkatadri U, Rardin RL, Montreuil B (1997) A design methodology for fractal layout organization. IIE Trans 29:911–924

    Google Scholar 

  159. Wang L, Wang X, Fu J, Zhen L (2008) A novel probability binary particle swarm optimization algorithm and its application. J software 3(9):28–35

    Google Scholar 

  160. Winston WL (1991) Introduction to mathematical programming: applications & algorithms. PWS-KENT, Boston

    MATH  Google Scholar 

  161. Wu Y, Ji P (2007) Solving the quadratic assignment problems by a genetic algorithm with a new replacement strategy. World Acad Sci, Eng Technol 30

  162. Yang T, Peters BA (1998) Flexible machine layout design for dynamic and uncertain production environments. Eur J Oper Res 108:49–64

    Article  MATH  Google Scholar 

  163. Ying-Chin H, Colin LM (1998) Machine layout with a linear single-row flow path in an automated manufacturing system. J Manuf Syst 17(1):1–22

    Article  Google Scholar 

  164. Yuying L, Qiaoyan W, Lixiang L, Haipeng P (2009) Hybrid chaotic ant swarm optimization. Chaos, Solitons and Fractals 42:880–889

    Article  Google Scholar 

  165. Zadeh LA (1965) Fuzzy Sets. Inf Control 8:338–353

    Article  MathSciNet  MATH  Google Scholar 

  166. Zimmermann HJ (1987) Fuzzy sets. decision making and expert systems. Kluwer, Boston

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tian Soon Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moslemipour, G., Lee, T.S. & Rilling, D. A review of intelligent approaches for designing dynamic and robust layouts in flexible manufacturing systems. Int J Adv Manuf Technol 60, 11–27 (2012). https://doi.org/10.1007/s00170-011-3614-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-011-3614-x

Keywords

Navigation