Skip to main content

Advertisement

Log in

A review of different approaches to the facility layout problems

  • Original Article
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Here, an attempt is made to present a state-of-the-art review of papers on facility layout problems. This paper aims to deal with the current and future trends of research on facility layout problems based on previous research including formulations, solution methodologies and development of various software packages. New developments of various techniques provide a perspective of the future research in facility layout problems. A trend toward multi-objective approaches, developing facility layout software using meta-heuristics such as simulated annealing (SA), genetic algorithm (GA) and concurrent engineering to facility layout is observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tompkins JA, White JA (1984) Facilities planning. Wiley, New York

  2. Francis RL, White JA (1974) Facility layout and location: an analytical approach. Prentice Hall, Englewood Cliffs, NJ

  3. Mecklenburgh JC (1985) Process plant layout. Longman, New York

  4. Francis RL, McGinnis LF, White JA (1992) Facility layout and layout: an analytical approach. Prentice Hall, Englewood Cliffs, NJ

  5. Askin RG, Standridge CR (1993) Modeling and analysis of manufacturing systems. Wiley, New York

  6. Fu MC, Kaku BK (1997) Minimizing work-in-process and material handling in the facilities layout problem. IIE Trans 29:29–36

    Google Scholar 

  7. Koopmans TC, Beckman M (1957) Assignment problems and the location of economic activities. Econometrica 25:53–76

    MATH  MathSciNet  Google Scholar 

  8. Garey MR, Johnson DS (1979) Computers and intractability: a guide to the theory of NP-completeness. WH Freemen, New York

  9. Kusiak A, Heragu S (1987) The facility layout problem. Eur J Oper Res 29:229–251

    Article  MATH  MathSciNet  Google Scholar 

  10. Laursen PS (1993) Simulated annealing for the QAP-optimal tradeoff between simulation time and solution quality. Eur J Oper Res 69:238–243

    Article  Google Scholar 

  11. Sarker BR, Yu J (1994) A two-phase procedure for duplicating bottleneck machines in linear layout, cellular manufacturing system. Int J Prod Res 32(9):2049–2066

    MATH  Google Scholar 

  12. Kouvelis P, Chiang W, Yu G (1995) Optimal algorithms for row layout problems in automated manufacturing systems. IIE Trans 27(1):99–104

    Google Scholar 

  13. Sarker BR, Wilhelm WE, Hogg GL (1998) One-dimensional machine layout problems in a multi-product flow line with equidistant layouts. Eur J Oper Res 105(3):401–426

    Article  MATH  Google Scholar 

  14. Lawler EL (1962) The quadratic assignment problem. Manage Sci 9(4):586–599

    MathSciNet  Google Scholar 

  15. Christofides N, Mingozzi A, Toth P (1980) Contributions to the quadratic assignment problem. Eur J Oper Res 18(4):243–247

    Article  MathSciNet  Google Scholar 

  16. Hassan MMD, Hogg GL (1987) A review of graph theory applications to the facilities layout problem. Omega 15:291–300

    Article  Google Scholar 

  17. Foulds LR (1991) Graph theory and applications. Springer, Berlin Heidelberg New York

  18. Meller RD, Gau KY (1996) The facility layout problem: recent and emerging trends and perspectives. J Manuf Syst 15:351–366

    Article  Google Scholar 

  19. Boswell SG (1992) TESSA a new greedy algorithm for facilities layout planning. Int J Prod Res 30:1957–1968

    MATH  Google Scholar 

  20. Kim JY, Kim YD (1995) Graph theoretic heuristics for unequal-sized facility layout problems. Omega 23:391–401

    Article  Google Scholar 

  21. Watson KK, Giffin JW (1997) The vertex splitting algorithm for facilities layout. Int J Prod Res 35:2477–2492

    Article  MATH  Google Scholar 

  22. Montreuil B (1990) A modeling framework for integrating layout design and flow network design. In: Proceedings of the material handling research colloquium, Hebron, KY, pp 43–58

  23. Heragu S, Kusiak A (1991) Efficient models for the facility layout problems. Eur J Oper Res 53:1–13

    Article  MATH  Google Scholar 

  24. Lacksonen TA (1994) Static and dynamic facility layout problems with varying areas. J Oper Res Soc 45:59–69

    MATH  Google Scholar 

  25. Lacksonen TA (1997) Pre-processing for static and dynamic facility layout problems. Int J Prod Res 35:1095–1106

    Article  MATH  Google Scholar 

  26. Kim JY, Kim YD (1999) A branch-and-bound algorithm for locating input and output points of departments on the block layout. J Oper Res Soc 50:517–525

    MATH  Google Scholar 

  27. Barbosa-Povoa AP, Mateus R, Novais AQ (2001) Optimal two dimensional layout of industrial facilities. Int J Prod Res 39(12):2567–2593

    Article  MATH  Google Scholar 

  28. Armour GC, Buffa ES (1963) A heuristic algorithm and simulation approach to relative allocation of facilities. Manage Sci 9:294–309

    Google Scholar 

  29. Montreuil B, Ratliff HD, Goetschalckx M (1987) Matching based interactive facility layout. IIE Trans 19(3):271–279

    Google Scholar 

  30. Goetschalckx M (1992) An interactive layout heuristic based on hexagonal adjacency graphs. Eur J Oper Res 63:304–321

    Article  MATH  Google Scholar 

  31. Hassan MMD, Hogg GL, Smith DR (1986) SHAPE: a construction algorithm for area placement evaluation. Int J Prod Res 24(5):1283–1295

    MATH  Google Scholar 

  32. Tam KY (1992) A simulated annealing algorithm for allocating space to manufacturing cells. Int J Prod Res 30:63–87

    MATH  Google Scholar 

  33. Bozer YA, Meller RD, Erlebacher S J (1994) An improvement-type layout algorithm for single and multiple-floor facilities. Manage Sci 40(7):918–932

    MATH  Google Scholar 

  34. Tate DM, Smith AE (1995) A genetic approach to the quadratic assignment problem. Comput Oper Res 22:73–83

    Article  MATH  Google Scholar 

  35. Moore JM (1974) Computer aided facilities design: an international survey. Int J Prod Res 12(1):21–44

    Google Scholar 

  36. Johnson FR (1982) SPACECRAFT for multi-floor layout planning. Manage Sci 28(4):407–417

    Google Scholar 

  37. Tompkins JA, Reed Jr R (1976) An applied model for the facilities design problem. Int J Prod Res 14(5):583–595

    Google Scholar 

  38. Banerjee P, Montreuil B, Moodie CL, Kashyap RL (1992) A modeling of interactive facilities layout designer reasoning using qualitative patterns. Int J Prod Res 30(3):433–453

    Google Scholar 

  39. Tam KY (1992) Genetic algorithms, function optimization, and facility layout design. Eur J Oper Res 63:322–346

    Article  MATH  Google Scholar 

  40. Foulds LR, Robinson DF (1978) Graph theoretic heuristics for the plant layout problem. Int J Prod Res 16(1):27–37

    Google Scholar 

  41. Balakrishnan J, Cheng CH, Wong KF (2003) FACOPT: a user friendly facility layout optimization system. Comput Oper Res 30(11):1625–1641

    Article  MATH  Google Scholar 

  42. Burkard RE, Rend F (1984) A thermodynamically motivated simulation procedure for combinatorial optimization problems. Eur J Oper Res 17:169–174

    Article  MATH  Google Scholar 

  43. Tavakkoli-Moghaddain R, Shanyan E (1998) Facilities layout design by genetic algorithms. Comput Ind Eng 35(3/4):527–530

    Article  Google Scholar 

  44. Helm SA, Hadley SW (2000) Tabu search based heuristics for multi floor facility layout. Int J Prod Res 38(2):365–383

    Article  MATH  Google Scholar 

  45. Talbi EG, Roux O, Fonlupt C, Robillard D (2001) Parallel ant colonies for quadratic assignment pronlem. Future Generation Comput Syst 17:441–449

    Article  MATH  Google Scholar 

  46. Kirkpatrick S, Gelatt Jr CD, Vecchi MP (1983) Optimisation by simulated annealing. Sci 220(4598):671–680

    MathSciNet  Google Scholar 

  47. Wilhelm MR, Ward TL (1987) Solving quadratic assignment problems by simulated annealing. IIE Trans 19:107–119

    Google Scholar 

  48. Kaku BK, Thompson GL (1986) An exact algorithm for the general quadratic assignment problem. Eur J Oper Res 23(3):382–390

    Article  MathSciNet  Google Scholar 

  49. Connolly DT (1990) An improved annealing scheme for the QAP. Eur J Oper Res 46:93–100

    Article  MATH  MathSciNet  Google Scholar 

  50. Heragu SS, Alfa AS (1992) Experimental analysis of simulated annealing based algorithms for the layout problem. Eur J Oper Res 57:190–223

    Article  MATH  Google Scholar 

  51. Kouvelis P, Kuruwarwala AA, Gutierrez GJ (1992) Algorithms for robust single and multiple period layout planning for manufacturing systems. Eur J Oper Res 63:287–303

    Article  MATH  Google Scholar 

  52. Jajodia S, Minis I, Harhalakis G, Proth J M (1992) CLASS: computerized layout solutions using simulated annealing. Int J Prod Res 30(1):95–108

    MATH  Google Scholar 

  53. Shang JS (1993) Multi-criteria facility layout problem: an integrated approach. Eur J Oper Res 66:291–304

    Article  MATH  Google Scholar 

  54. Souilah A (1995) Theory and methodology: simulated annealing for manufacturing systems layout design. Eur J Oper Res 82:592–614

    Article  MATH  Google Scholar 

  55. Peng T, Huanchen W, Dongme Z (1996) Simulated annealing for the quadratic assignment problem: a further study. Comput Ind Eng 31(3/4):925–928

    Article  Google Scholar 

  56. Meller RD, Bozer YA (1996) A new simulated annealing algorithm for the facility layout problem. Int J Prod Res 34:1675–1692

    MATH  Google Scholar 

  57. Azadivar F, Wang JJ (2000) Facility layout optimization using simulation and genetic algorithms. Int J Prod Res 38(17):4369–4383

    Article  MATH  Google Scholar 

  58. Baykasoglu A, Gindy NNZ (2001) A simulated annealing algorithm for dynamic plant layout. Comput Oper Res 28:1403–1426

    Article  MATH  MathSciNet  Google Scholar 

  59. Misevicius A (2003) A modified simulated annealing algorithm for quadratic assignment problem. Informatica 14(4):497–514

    MathSciNet  MATH  Google Scholar 

  60. Banerjee P, Zhou Y (1995) Facility layout design optimization with single loop material flow path configuration. Int J Prod Res 33(1):183–203

    MATH  Google Scholar 

  61. Kochhar JS, Heragu SS (1998) MULTI-HOPE: a tool for multiple floor layout problems. Int J Prod Res 38(12):3421–3435

    Article  Google Scholar 

  62. Islier AA (1998) A genetic algorithm approach for multiple criteria facility layout design. Int J Prod Res 36(6):1549–1569

    Article  MATH  Google Scholar 

  63. Rajasekharan M, Peters BA, Yang T (1998) A genetic algorithm for facility layout design in flexible manufacturing systems. Int J Prod Res 36(1):95–110

    Article  MATH  Google Scholar 

  64. Mak KL, Wong YS, Chan FTS (1998) A genetic algorithm for facility layout problems. Comput Intg Manuf 11:113–127

    Google Scholar 

  65. McKendall AR, Noble JS, Klein CM (1999) Facility layout of irregular-shaped departments using a nested approach. Int J Prod Res 37(13):2895–2914

    Article  MATH  Google Scholar 

  66. Kochhar JS, Heragu SS (1999) Facility layout design in a changing environment. Int J Prod Res 37(11):2429–2446

    Article  MATH  Google Scholar 

  67. Gau KY, Meller RD (1999) An iterative facility layout algorithm. Int J Prod Res 37(16):3739–3758

    Article  MATH  Google Scholar 

  68. Al-Hakim LA (2000) On solving facility layout problems using genetic algorithms. Int J Prod Res 38(11):2573–2582

    Article  MATH  Google Scholar 

  69. Ahuja RK, Orlin JB, Tiwari A (2000) A greedy genetic algorithm for the quadratic assignment problem. Comput Oper Res 27:917–934

    Article  MathSciNet  MATH  Google Scholar 

  70. Wu Y, Appleton E (2002) The optimization of block layout and aisle structure by a genetic algorithm. Comput Ind Eng 41:371–387

    Article  Google Scholar 

  71. Lee KY, Han SN, Roh M (2003) An improved genetic algorithm for facility layout problems having inner structure walls and passages. Comput Oper Res 30:117–138

    Article  MATH  MathSciNet  Google Scholar 

  72. Tsuchiya K, Bharitkar S, Takefuji Y (1996) A neural network approach to facility layout problems. Eur J Oper Res 89:556–563

    Article  MATH  Google Scholar 

  73. Malakooti B, Tsurushima A (1989) An expert system using priorities for solving multiple-criteria facility layout problems. Int J Prod Res 27(5):793–808

    Google Scholar 

  74. Abdou G, Dutta SP (1990) An integrated approach to facilities layout using expert systems. Int J Prod Res 28(4):685–708

    Google Scholar 

  75. Heragu SS, Kusiak A (1990) Machine layout: an optimization and knowledge based approach. Int J Prod Res 28(4):615–635

    Google Scholar 

  76. Sirinaovakul B, Thajchayapong P (1994) A knowledge base to assist a heuristic search approach to facility layout. Int J Prod Res 32(1):141–160

    MATH  Google Scholar 

  77. Kumar SRT, Kashyap RL, Moodie CL (1988) Application of expert systems and pattern recognition methodologies to facilities layout planning. Int J Prod Res 26(5):905–930

    Google Scholar 

  78. Dutta KN, Sahu S (1982) A multigoal heuristic for facilities design problems: MUGHAL. Int J Prod Res 20(2):147–154

    Google Scholar 

  79. Murtagh BA, Jefferson TR, Sornprasit V (1982) A heuristic procedure for solving the quadratic assignment problem. Eur J Oper Res 9:71–76

    Article  MATH  Google Scholar 

  80. Foulds LR (1983) Techniques for facilities layout: deciding which pairs of activities should be adjacent. Manege Sci 9(12):1414–1416

    Google Scholar 

  81. Herroelen W, Vangils A (1985) On the use of flow dominance in complexity measure for facility layout problems. Int J Prod Res 23(1):97–108

    Google Scholar 

  82. Fortenberry JC, Cox JF (1985) Multiple criteria approach to the facilities layout problem. Int J Prod Res 23(4):773–782

    MATH  Google Scholar 

  83. Hammouche A, Webster D (1985) Evaluation of an application of graph theory to the layout problem. Int J Prod Res 23(5):987–1000

    Google Scholar 

  84. Foulds LR, Giffin JW (1985) A graph-theoretic heuristic for minimizing total transportation cost in facilities layout. Int J Prod Res 23:1247–1257

    Google Scholar 

  85. Green LH, Al-Hakim LA (1985) A heuristic for facility layout planning. Omega 13:469–474

    Article  Google Scholar 

  86. Rosenblatt MJ (1986) The dynamics of plant layout. Manege Sci 32(1):76–86

    MATH  Google Scholar 

  87. Foulds LR, Giffin JW, Cameron DC (1986) Drawing a block plan with graph theory and a microcomputer. Comput Ind Eng 10:109–116

    Article  Google Scholar 

  88. Grobelny J (1987) On one possible ‘fuzzy’ approach to facilities layout problems. Int J Prod Res 25:1123–1141

    MATH  Google Scholar 

  89. Evan GW, Wilhelm MR, Karwowski W (1987) A layout design heuristic employing the theory of fuzzy sets. Int J Prod Res 25(10):1431–1450

    Google Scholar 

  90. Urban TL (1987) A multiple criteria model for the facilities layout problem. Int J Prod Res 25(12):1805–1812

    Google Scholar 

  91. Rosenblatt MJ, Lee HL (1987) A robustness approach to facilities design. Int J Prod Res 25:479–486

    Google Scholar 

  92. Jacobs FR (1987) A layout planning system with multiple criteria and a variable domain representation. Manage Sci 33:1020–1034

    MATH  Google Scholar 

  93. Grobelny J (1988) The ‘linguistic pattern’ method for a workstation layout analysis. Int J Prod Res 26:1779–1798

    Google Scholar 

  94. Kaku BK, Thompson GL, Baybars I (1988) A heuristic method for the multi-story layout problem. Eur J Oper Res 37:384–397

    Article  MATH  Google Scholar 

  95. Smith JM, MacleodI R (1988) A relaxed assignment algorithm for the quadratic assignment problem. INFORMS 26(3):170–190

    MATH  Google Scholar 

  96. Malakooti B (1989) Multiple objective facility layout: a heuristic to generate efficient alternatives. Int J Prod Res 27(7):1225–1238

    Google Scholar 

  97. Heragu SS, Kusiak A (1988) Machine layout problems in flexible manufacturing systems. Oper Res 36(2):258–268

    Article  Google Scholar 

  98. Houshyar A, McGinnis LF (1990) A heuristic for assigning facilities to locations to minimize WIP travel distance in a linear facility. Int J Prod Res 28(8):1485–1498

    Google Scholar 

  99. Al-Hakim LA (1991) Two graph theoretic procedures for an improved solution to the facilities layout problem. Int J Prod Res 29(8):1701–1718

    MATH  Google Scholar 

  100. Kaku BK, Thompson GL, Morton TE (1991) A hybrid heuristic for the facilities layout problems. Comput Oper Res 18(3):241–253

    Article  MATH  Google Scholar 

  101. Hassan MMD, Hogg GL (1991) On constructing a block layout by graph theory. Int J Prod Res 29(6):1263–1278

    Google Scholar 

  102. Logendran R (1991) Impact of sequence of operations and layout of cells in cellular manufacturing. Int J Prod Res 29(2):375–390

    Google Scholar 

  103. Burkard RE, Kafish S, Rend F (1991) QAPLIB- a quadratic assignment problem library. Eur J Oper Res 55:115–119

    Article  MATH  Google Scholar 

  104. Camp DJV, Carter MW, Vannelli A (1992) A nonlinear optimization approach for solving facility layout problems. Eur J Oper Res 57:174–189

    Article  MATH  Google Scholar 

  105. Leung J (1992) A graph theoretic heuristic for designing loop-layout manufacturing systems. Eur J Oper Res 57:243–252

    Article  MATH  Google Scholar 

  106. Kaku K, Rachamadugu R (1992) Layout design for flexible manufacturing systems. Eur J Oper Res 57:224–230

    Article  MATH  Google Scholar 

  107. Rosenblatt MJ, Golany B (1992) A distance assignment approach to the facility layout problem. Eur J Oper Res 57:253–270

    Article  MATH  Google Scholar 

  108. Harmonosky CM, Tothero GK (1992) A multi-factor plant layout methodology. Int J Prod Res 30:1773–1789

    Google Scholar 

  109. Askin RG, Mitwasi MG (1992) Integrating facility layout with process selection and capacity planning. Eur J Oper Res 57:162–173

    Article  MATH  Google Scholar 

  110. Balakrishnan J, Jacobs FR, Venkataramanan MA (1992) Solutions for the constrained dynamic facility layout problem. Eur J Oper Res 57:280–286

    Article  MATH  Google Scholar 

  111. Al-Hakim LA (1992) A modified procedure for converting a dual graph to a blok layout. Int J Prod Res 30(10):2467–2476

    Google Scholar 

  112. Lacksonen TA, Enscore EE (1993) Quadratic assignment algorithms for the dynamic layout problem. Int J Prod Res 31(3):503–517

    Google Scholar 

  113. White DJ (1993) A convex form of the quadratic assignment problem. Eur J Oper Res 65:407–416

    Article  MATH  Google Scholar 

  114. Yaman R, Gethin DT, Clarke MJ (1993) An effective sorting method for facility layout construction. Int J Prod Res 31(2):413–427

    Google Scholar 

  115. Das S (1993) A facility layout method for flexible manufacturing systems. Int J Prod Res 31(2):279–297

    Google Scholar 

  116. Raoot AD, Rakshit A (1991) A fuzzy approach to facilities layout planning. Int J Prod Res 29(4):835–857

    Google Scholar 

  117. Raoot AD, Rakshit A (1994) A fuzzy heuristic for the quadratic assignment formulation to the facility layout problem. Int J Prod Res 32(3):563–581

    MATH  Google Scholar 

  118. Urban TL (1993) A heuristic for the dynamic facility layout problem. IIE Trans 25(4):57–63

    Google Scholar 

  119. Montreuil B, Venkatadri U, Ratliff HD (1993) Generating a layout from a design skeleton. IIE Trans 25(1):3–15

    Google Scholar 

  120. Boswell SG (1994) A reply to ‘a note on similarity of a new greedy heuristic for facility layout by graph theory to an existing approach’. Int J Prod Res 32(1):235–240

    MATH  MathSciNet  Google Scholar 

  121. Langevin A, Montreuil B, Riopel D (1994) Spine layout design. Int J Prod Res 32(2):429–442

    MATH  Google Scholar 

  122. Tretheway SJ, Foote BL (1994) Automatic computation and drawing of facility layout with logical aisle structures. Int J Prod Res 32(7):1545–1555

    MATH  Google Scholar 

  123. White DJ (1996) A lagrangean relaxation approach for a turbine design quadratic assignment problem. J Oper Res Soc 47:766–775

    MATH  Google Scholar 

  124. Badiru AB, Arif A (1996) FLEXPERT: facility layout expert system using fuzzy linguistic relationship codes. IIE Trans 28:295–308

    Google Scholar 

  125. Chiang WC, Kouvelis P (1996) An improved tabu search heuristic for solving facility layout design problems. Int J Prod Res 34:2565–2586

    MATH  Google Scholar 

  126. Urban TL (1998) Solution procedures for dynamic facility layout problem. Annals Oper Res 76:323–342

    Article  MATH  Google Scholar 

  127. Meller RD (1997) The multi-bay manufacturing facility layout problem. Int J Prod Res 35(5):1229–1237

    Article  MATH  MathSciNet  Google Scholar 

  128. Zetu D, Prashant B, Schneider P (1998) Data input model for virtual reality-aided facility layout. IIE Trans 30(7):597–620

    Article  Google Scholar 

  129. Bozer YA, Meller RD (1997) A reexamination of distance-based facility layout problem. IIE Trans 29(7):549–560

    Article  Google Scholar 

  130. Chen CW, Sha DY (1999) A design approach to the multi-objective facility layout problem. Int J Prod Res 37(5):1175–1196

    Article  MATH  Google Scholar 

  131. Smith RP, Helm JA (1999) Virtual facility layout design: the value of an iterative three-dimensional representation. Int J Prod Res 37(17):3941–3957

    Article  MATH  Google Scholar 

  132. Dweiri F (1999) Fuzzy development of crisp activity relationship charts for facilities layout. Comput Ind Eng 36(1):1–16

    Article  Google Scholar 

  133. Knowles JD, Corne DW (2002) Towards landscape analysis to inform the design of a hybrid local for the multi-objective quadratic assignment problem. Hybrid Intell Syst 271–279

  134. Kim JY, Kim YD (2000) Layout planning for facilities with fixed shapes and input and output points. Int J Prod Res 38(18):4635–4653

    Article  MATH  Google Scholar 

  135. Al-Hakim LA (2001) A note on efficient facility layout planning in a maximally planar graph model. Int J Prod Res 39(7):1549–1555

    Article  MATH  Google Scholar 

  136. Wang S, Sarker BR (2002) Locating cells with bottleneck machines in cellular manufacturing systems. Int J Prod Res 40(2):403–424

    Article  MATH  Google Scholar 

  137. Chan WM, Chan CY, Ip WH (2002) A heuristic algorithm for machine assignment in cellular layout. Comput Ind Eng 44:49–73

    Article  Google Scholar 

  138. Diponegoro A, Sarker BR (2003) Machine assignment in a nonlinear multi-product flowline. J Oper Res Soc 54(5):472–489

    Article  MATH  Google Scholar 

  139. Castillo I, Peters BA (2003) An extended distance based facility layout problem. Int J Prod Res 41(11):2451–2479

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, S.P., Sharma, R.R.K. A review of different approaches to the facility layout problems. Int J Adv Manuf Technol 30, 425–433 (2006). https://doi.org/10.1007/s00170-005-0087-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-005-0087-9

Keywords

Navigation