Skip to main content
Log in

Anteroposterior and rotational stability in fixed and mobile bearing unicondylar knee arthroplasty: a cadaveric study using the robotic force sensor system

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

Different bearing designs in unicondylar knee arthroplasty (UKA) have been developed in order to influence the rate of polyethylene wear. Increased anteroposterior translation and rotation after UKA has been hypothesized due to changes in joint surface geometry. The mobile bearing design was expected to show increased anteroposterior translation compared to the fixed bearing and biconcave bearing design.

Methods

Six human cadaver knees were used for the tests. Anteroposterior and rotational knee stability was analysed in 0°, 30°, 60°, 90° and 120° of knee flexion using a robotic testing system (KR 125, KUKA Robots Augsburg, Germany). Three forces and moments were measured in a Cartesian coordinate system with a resolution of 1.0 N and 0.1 Nm.

Results

There was no difference between the native knees and the knees after UKA in AP translation and rotation in all knee flexion angles. The factor knee flexion angle had a significant impact on the anterior translation when the type of bearing was neglected (p ≤ 0.015).

Conclusion

This study shows that the natural knee stability in AP translation and rotation can be preserved in UKA. The preserved knee stability in different planes after UKA underlines the advantage of UKA when surgery is required in osteoarthritic changes of the medial compartment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Allen CR, Wong EK, Livesay GA, Sakane M, Fu FH, Woo SL (2000) Importance of the medial meniscus in the anterior cruciate ligament-deficient knee. J Orthop Res 18:109–115

    Article  PubMed  CAS  Google Scholar 

  2. Argenson JN, Komistek RD, Aubaniac JM, Dennis DA, Northcut EJ, Anderson DT, Agostini S (2002) In vivo determination of knee kinematics for subjects implanted with a unicompartmental arthroplasty. J Arthroplast 17:1049–1054

    Article  Google Scholar 

  3. Bartley RE, Stulberg SD, Robb WJ, Sweeney HJ (1994) Polyethylene wear in unicompartmental knee arthroplasty. Clin Orthop Relat Res 299:18–24

    PubMed  Google Scholar 

  4. Campbell DG, Johnson LJ, West SC (2006) Multiparameter quantitative computer-assisted tomography assessment of unicompartmental knee arthroplasties. ANZ J Surg 76:782–787

    Article  PubMed  Google Scholar 

  5. Casino D, Martelli S, Zaffagnini S, Lopomo N, Iacono F, Bignozzi S, Visani A, Marcacci M (2009) Knee stability before and after total and unicondylar knee replacement: in vivo kinematic evaluation utilizing navigation. J Orthop Res 27:202–207

    Article  PubMed  Google Scholar 

  6. Collier MB, Engh CA, McAuley JP, Engh GA (2007) Factors associated with the loss of thickness of polyethylene tibial bearings after knee arthroplasty. J Bone Joint Surg Am 89:1306–1314

    Article  PubMed  Google Scholar 

  7. Freeman MA, Pinskerova V (2005) The movement of the normal tibio-femoral joint. J Biomech 38:197–208

    Article  PubMed  CAS  Google Scholar 

  8. Goodfellow JW, O’Connor J (1986) Clinical results of the Oxford knee. Surface arthroplasty of the tibiofemoral joint with a meniscal bearing prosthesis. Clin Orthop Relat Res 205:21–42

    PubMed  Google Scholar 

  9. Griffin T, Rowden N, Morgan D, Atkinson R, Woodruff P, Maddern G (2007) Unicompartmental knee arthroplasty for the treatment of unicompartmental osteoarthritis: a systematic study. ANZ J Surg 77:214–221

    Article  PubMed  Google Scholar 

  10. Harner CD, Mauro CS, Lesniak BP, Romanowski JR (2009) Biomechanical consequences of a tear of the posterior root of the medial meniscus. Surgical technique. J Bone Joint Surg Am 91(Suppl 2):257–270

    PubMed  Google Scholar 

  11. Heinert G, Kendoff D, Preiss S, Gehrke T, Sussmann P (2011) Patellofemoral kinematics in mobile-bearing and fixed-bearing posterior stabilised total knee replacements: a cadaveric study. Knee Surg Sports Traumatol Arthrosc 19:967–972

    Article  PubMed  CAS  Google Scholar 

  12. Hopper GP, Leach WJ (2008) Participation in sporting activities following knee replacement: total versus unicompartmental. Knee Surg Sports Traumatol Arthrosc 16:973–979

    Article  PubMed  Google Scholar 

  13. Iwaki H, Pinskerova V, Freeman MA (2000) Tibiofemoral movement 1: the shapes and relative movements of the femur and tibia in the unloaded cadaver knee. J Bone Joint Surg Br 82:1189–1195

    Article  PubMed  CAS  Google Scholar 

  14. Kaya Bicer E, Servien E, Lustig S, Demey G, Ait Si Selmi T, Neyret P (2010) Sagittal flexion angle of the femoral component in unicompartmental knee arthroplasty: is it same for both medial and lateral UKAs? Knee Surg Sports Traumatol Arthrosc 18:928–933

    Article  PubMed  Google Scholar 

  15. Kort NP, van Raay JJ, Cheung J, Jolink C, Deutman R (2007) Analysis of Oxford medial unicompartmental knee replacement using the minimally invasive technique in patients aged 60 and above: an independent prospective series. Knee Surg Sports Traumatol Arthrosc 15:1331–1334

    Article  PubMed  Google Scholar 

  16. Kretzer JP, Jakubowitz E, Reinders J, Lietz E, Moradi B, Hofmann K, Sonntag R (2011) Wear analysis of unicondylar mobile bearing and fixed bearing knee systems: a knee simulator study. Acta Biomater 7:710–715

    Article  PubMed  Google Scholar 

  17. Levy IM, Torzilli PA, Gould JD, Warren RF (1989) The effect of lateral meniscectomy on motion of the knee. J Bone Joint Surg Am 71:401–406

    PubMed  CAS  Google Scholar 

  18. Levy IM, Torzilli PA, Warren RF (1982) The effect of medial meniscectomy on anterior-posterior motion of the knee. J Bone Joint Surg Am 64:883–888

    PubMed  CAS  Google Scholar 

  19. Li G (2005) In vivo articular cartilage contact kinematics of the knee: an investigation using dual-orthogonal fluoroscopy and magnetic resonance image-based computer models. Am J Sports Med 33:102–107

    Article  PubMed  CAS  Google Scholar 

  20. Lyons MC, MacDonald SJ, Somerville LE, Naudie DD, McCalden RW (2012) Unicompartmental versus total knee arthroplasty database analysis: is there a winner? Clin Orthop Relat Res 470:84–90

    Article  PubMed  Google Scholar 

  21. Machner A, Pap G, Awiszus F (2002) Evaluation of quadriceps strength and voluntary activation after unicompartmental arthroplasty for medial osteoarthritis of the knee. J Orthop Res 20:108–111

    Article  PubMed  Google Scholar 

  22. Paletta GA, Manning T, Snell E, Parker R, Bergfeld J (1997) The effect of allograft meniscal replacement on intraarticular contact area and pressures in the human knee. A biomechanical study. Am J Sports Med 25:692–698

    Article  PubMed  Google Scholar 

  23. Pandit H, Jenkins C, Beard DJ, Price AJ, Gill HS, Dodd CA, Murray DW (2010) Mobile bearing dislocation in lateral unicompartmental knee replacement. Knee 17:392–397

    Article  PubMed  CAS  Google Scholar 

  24. Papageorgiou CD, Gil JE, Kanamori A, Fenwick JA, Woo SL, Fu FH (2001) The biomechanical interdependence between the anterior cruciate ligament replacement graft and the medial meniscus. Am J Sports Med 29:226–231

    PubMed  CAS  Google Scholar 

  25. Price AJ, Rees JL, Beard DJ, Gill RHS, Dodd CAF, Murray DM (2004) Sagittal plane kinematics of a mobile-bearing unicompartmental knee arthroplasty at 10 years: a comparative in vivo fluoroscopic analysis1. J Arthroplasty 19:590–597

    Article  PubMed  Google Scholar 

  26. Robinson BJ, Rees JL, Price AJ, Beard DJ, Murray DW, McLardy Smith P, Dodd CA (2002) Dislocation of the bearing of the Oxford lateral unicompartmental arthroplasty. A radiological assessment. J Bone Joint Surg Br 84:653–657

    Article  PubMed  CAS  Google Scholar 

  27. Schulze M, Hartensuer R, Gehweiler D, Hölscher U, Raschke MJ, Vordemvenne T (2012) Evaluation of a robot-assisted testing system for multisegmental spine specimens. J Biomech. doi: 10.1016/j.jbiomech.2012.02.013

  28. Suggs JF, Li G, Park SE, Sultan PG, Rubash HE, Freiberg AA (2006) Knee biomechanics after UKA and its relation to the ACL—a robotic investigation. J Orthop Res 24:588–594

    Article  PubMed  Google Scholar 

  29. Victor J, Labey L, Wong P, Innocenti B, Bellemans J (2010) The influence of muscle load on tibiofemoral knee kinematics. J Orthop Res 28:419–428

    PubMed  Google Scholar 

  30. Weston-Simons JS, Pandit H, Gill HS, Jackson WF, Price AJ, Dodd CA, Murray DW (2011) The management of mobile bearing dislocation in the Oxford lateral unicompartmental knee replacement. Knee Surg Sports Traumatol Arthrosc 19:2023–2026

    Article  PubMed  Google Scholar 

  31. Whittaker JP, Naudie DD, McAuley JP, McCalden RW, MacDonald SJ, Bourne RB (2010) Does bearing design influence midterm survivorship of unicompartmental arthroplasty? Clin Orthop Relat Res 468:73–81

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the Robert Mathys Foundation for their financial support and Joshua Schkrohowski, MD, for his helpful comments regarding the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Becker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Becker, R., Mauer, C., Stärke, C. et al. Anteroposterior and rotational stability in fixed and mobile bearing unicondylar knee arthroplasty: a cadaveric study using the robotic force sensor system. Knee Surg Sports Traumatol Arthrosc 21, 2427–2432 (2013). https://doi.org/10.1007/s00167-012-2157-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-012-2157-5

Keywords

Navigation