Skip to main content
Log in

Supporting product architecture design using computational design synthesis with network structure constraints

  • Original Paper
  • Published:
Research in Engineering Design Aims and scope Submit manuscript

Abstract

A product’s architecture can affect many aspects of product and process quality, from technical performance to the design effort required, production costs and satisfaction of later lifecycle requirements. This paper explores how computational tools can augment creative methods in product architecture design. Based on an empirical study aiming to understand the context of product architecture design, a new computational method is proposed to support this activity. In the method, product architectures—networks of components linked by connections—can be synthesised using constraints on the structure of the network to define the set of ‘realisable’ architectures for a product. An example illustrates how the method might be used on a real design problem, including the construction of an appropriate set of network structure constraints and the identification of promising architectures from the synthesis results. Preliminary evaluation of the method’s usability, assessed through a laboratory experiment, and its utility, assessed through application to a real historical design problem, supported by initial validation by an engineer from the case study company, suggests that the method has value for engineering design practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  • Alexander C (1964) Notes on the synthesis of form. Harvard University Press, Cambridge

    Google Scholar 

  • Allwood JM (2007) A structured search for novel manufacturing processes leading to a periodic table of ring rolling machines. J Mech Des 129:502–511

    Article  Google Scholar 

  • Andreasen MM (1992) Designing on a ‘designer’s workbench’ (DWB). In: Proceedings of the 9th WDK workshop. Rigi, Switzerland

  • Antonsson EK, Cagan J (2001) Formal engineering design synthesis. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Berliner C, Brimson JA (1988) Cost management for today’s advanced manufacturing: the CAM-I conceptual design. Harvard Business School Press, Boston

    Google Scholar 

  • Bermell-García P, Fan I (2002) A KBE System for the design of wind tunnel models using reusable knowledge components. In: Proceedings of the VI Congreso Internacional de Ingeniería de Proyectos. Barcelona, Spain

  • Blessing LT, Chakrabarti A (2009) DRM, a design research methodology. Springer, London

  • Bradley DA, Bracewell RH, Chaplin RV (1992) Engineering design and mechatronics: the Schemebuilder project. Res Eng Des 4:241–248. doi:10.1007/BF02032467

    Article  Google Scholar 

  • Brimble R, Sellini F (2000) The MOKA modelling language. In: Proceedings of the 12th international conference on knowledge engineering and knowledge management (EKAW2000). Juan-les-Pins, France

  • British Standards Institute (1986) Cycles–specification for photometric and physical requirements of lighting equipment. British Standard 6102–3:1986

  • Cagan J, Campbell MI, Finger S, Tomiyama T (2005) A framework for computational design synthesis: model and applications. J Comput Info Sci Eng 5:171–181. doi:10.1115/1.2013289

    Article  Google Scholar 

  • Campbell MI, Cagan J, Kotovsky K (2000) Agent-based synthesis of electromechanical design configurations. J Mech Des 122:61–69. doi:10.1115/1.533546

    Article  Google Scholar 

  • Chakrabarti A (2002) Engineering design synthesis: understanding, approaches and tools. Springer, London

    Google Scholar 

  • Chakrabarti A, Bligh TP (1996) An approach to functional synthesis of mechanical design concepts: theory, applications, and emerging research issues. AIEDAM 10:313–331

    Article  Google Scholar 

  • Chomsky N (2002) Syntactic structures. Mouton de Gruyter

  • Clarkson PJ, Simons CS, Eckert CM (2004) Predicting change propagation in complex design. J Mech Des 126:788–797

    Article  Google Scholar 

  • Corallo A, Laubacher R, Margherita A, Turrisi G (2009) Enhancing product development through knowledge-based engineering (KBE): a case study in the aerospace industry. J Manuf Tech Manag 20:1070–1083. doi:10.1108/17410380910997218

    Article  Google Scholar 

  • Crawley EF, de Weck OL, Eppinger SD, Magee C, Moses J, Seering WP, Schindall J, Wallace D, Whitney DE (2004) The influence of architecture in engineering systems. Massachusetts Institute of Technology Engineering Systems Division monograph

  • Cross NG (1994) Engineering design methods: strategies for product design. Wiley, Chichester

    Google Scholar 

  • de Weck OL, Suh ES, Chang D (2007) Flexible product platforms: framework and case study. Res Eng Des 18:67–89

    Article  Google Scholar 

  • Dyson J (1986) Vacuum cleaning appliance. Patent number 4593429, United States Patent Office

  • Eades P (1984) A heuristic for graph drawing. Congressus Numerantium 42:149–160

    MathSciNet  Google Scholar 

  • Eckert CM, Clarkson PJ, Zanker W (2004) Change and customisation in complex engineering domains. Res Eng Des 15:1–21. doi:10.1007/s00163-003-0031-7

    Article  Google Scholar 

  • Fricke G (1992) Experimental investigation of individual processes in engineering design. In: Cross N, Doorst K, Roozenburg N (eds) Research in design thinking. Delft University Press, The Netherlands, pp 105–109

    Google Scholar 

  • Fricke E, Schulz AP (2005) Design for changeability (DfC): principles to enable changes in systems throughout their entire lifecycle. Sys Eng 8:342–359. doi:10.1002/sys.20039

    Google Scholar 

  • Giffin ML, de Weck OL, Bounova G, Keller R, Eckert CM, Clarkson PJ (2009) Change propagation analysis in complex technical systems. J Mech Des 131:081001.1–081001.14. doi:10.1115/1.3149847

    Article  Google Scholar 

  • Golkar AA, Keller R, Robinson B, de Weck OL, Crawley EF (2009) A methodology for system architecting of offshore oil production systems. In: Proceedings of the international design structure matrix conference (DSM’09). Greenville, South Carolina, USA, pp 343–356

  • Gordon WJJ (1961) Synectics. Harper and Row

  • Heer J (2007) The prefuse information visualisation toolkit. http://www.prefuse.org

  • Hellenbrand D, Lindemann U (2008) Using the DSM to support the selection of product concepts. In: Proceedings of the international design structure matrix conference (DSM’08). Stockholm, Sweden

  • Helms B, Shea K, Hoisl F (2009) A framework for computational design synthesis based on graph-grammars and function-behaviour-structure. In: Proceedings of the ASME international design engineering technical conferences and computers and information in engineering conference (IDETC/CIE 2009). San Diego, California

  • Hirtz J, Stone R, McAdams D, Szykman S, Wood K (2002) A functional basis for engineering design: reconciling and evolving previous efforts. Res Eng Des 13:65–82

    Google Scholar 

  • Huang GQ (1996) Design for X—concurrent engineering imperatives, 1st edn. Chapman & Hall, London

    Google Scholar 

  • Jackson D (2006) Software abstractions: logic, language and analysis. MIT Press, Cambridge

    Google Scholar 

  • Jarratt TA, Eckert CM, Weeks R, Clarkson PJ (2003) Environmental legislation as a driver of design. In: Proceedings of the international conference on engineering design (ICED ‘03). Stockholm, Sweden, pp 231–232

  • Jiao J, Tseng MM (1999) A methodology of developing product family architecture for mass customization. J Intell Manuf 10:3–20

    Article  Google Scholar 

  • Keller R, Eckert CM, Clarkson PJ (2006) Heuristics for change prediction. In: Proceedings of the international design conference (DESIGN 2006). Dubrovnik, Croatia, pp 873–880

  • Kerzhner AA, Paredis CJ (2009) Using domain specific languages to capture design synthesis knowledge for model-based systems engineering. In: Proceedings of the ASME international design engineering technical conferences and computers and information in engineering conference (IDETC/CIE 2009). San Diego, California, USA

  • Knuth D (1998) The art of computer programming, volume 3: sorting and searching, 2nd edn. Addison-Wesley, Reading, Massachusetts

    Google Scholar 

  • Kurtoglu T, Campbell MI (2009) Automated synthesis of electromechanical design configurations from empirical analysis of function to form mapping. J Eng Des 20:83–104. doi:10.1080/09544820701546165

    Article  Google Scholar 

  • Langdon PM, Chakrabarti A (2001) Improving access to design solution spaces using visualisation and data reduction techniques. In: Proceedings of the international conference on engineering design (ICED ‘01). Glasgow, UK

  • Lindemann U, Maurer MS, Braun T (2008) Structural complexity management: an approach for the field of product design. Springer, Berlin

    Google Scholar 

  • Lipson H, Pollack JB (2000) Automatic design and manufacture of robotic lifeforms. Nature 406:974–978. doi:10.1038/35023115

    Article  Google Scholar 

  • Maiden NA (1998) CREWS-SAVRE: scenarios for acquiring and validating requirements. J Autom Softw Eng 5:419–446

    Article  Google Scholar 

  • Maier MW, Rechtin E (2000) The art of systems architecting, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  • McDermott J (1980) R1: an expert in the computer systems domain. In: Proceedings of the first national conference on artificial intelligence (AAAI-80). Stanford University, California

  • Mckay BD (1981) Practical graph isomorphism. Congressus Numerantium 30:45–87

    MathSciNet  Google Scholar 

  • Medjdoub B, Yannou B (2000) Separating topology and geometry in space planning. Comput-Aided Des 32:39–61. doi:10.1016/S0010-4485(99)00084-6

    Article  Google Scholar 

  • Mesihovic S, Malmqvist J (2000) PDM system based support for the sales-delivery process of engineer-to-order products. In: Proceedings of product models. Linköping, Sweden

  • Mintel (2008) Vacuum cleaners. Consumer report, Mintel International Group

  • Mullineux G, Hicks B, Medland A (2005) Constraint-aided product design. Acta Polytechnica 45:31–36

    Google Scholar 

  • Murdoch TN, Wallace KM (1992) An approach to configuration optimization. J Eng Des 3:99–116

    Article  Google Scholar 

  • Object Management Group (2006) Meta object facility (MOF) Core Specification v2.0

  • Ogawa A (1984) Separation of particles from air and gases. CRC Press, Boca Raton

    Google Scholar 

  • Osborn A (1957) Applied imagination. Scribner, New York

    Google Scholar 

  • Pahl G, Beitz W, Feldhusen J, Grote K-H (2007) Engineering design: a systematic approach, 3rd edn. Springer, London

    Google Scholar 

  • Paredis CJJ, Diaz-Calderon A, Sinha R, Khosla PK (2001) Composable models for simulation-based design. Eng Comput 17:112–128

    Article  MATH  Google Scholar 

  • Port O, Schiller Z (1990) A smarter way to manufacture. BusinessWeek 110–117

  • Pugh S (1990) Total design: integrated methods for successful product engineering. Addison, Wesley

    Google Scholar 

  • Purcell AT, Gero JS (1996) Design and other types of fixation. Des Stud 17:363–383. doi:10.1016/S0142-694X(96)00023-3

    Article  Google Scholar 

  • Ranta M, Mantyla M, Umeda Y, Tomiyama T (1996) Integration of functional and feature-based product modelling—the IMS/GNOSIS experience. Comput-Aided Des 28:371–381. doi:10.1016/0010-4485(95)00056-9

    Article  Google Scholar 

  • Rohrbach B (1969) Kreativ nach Regeln–Methode 635, eine neue Technik zum Lösen von Problemen. Absatzwirtschaft 12:73–75

    Google Scholar 

  • Russell SJ, Norvig P (2003) Artificial intelligence: a modern approach, 2nd edn. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Schmidt LC, Cagan J (1997) GGREADA: a graph grammar-based machine design algorithm. Res Eng Des 9:195–213. doi:10.1007/BF01589682

    Article  Google Scholar 

  • Shapiro A (2002) TouchGraph version 1.22. http://www.touchgraph.com

  • Shea K, Cagan J, Fenves SJ (1997) A shape annealing approach to optimal truss design with dynamic grouping of members. J Mech Des 119:388–394

    Article  Google Scholar 

  • Simon HA (1996) The sciences of the artificial, 3rd edn. MIT Press, Cambridge

    Google Scholar 

  • Sosa ME, Eppinger SD, Rowles CM (2007) A network approach to define modularity of components in complex products. J Mech Des 129:1118–1129

    Article  Google Scholar 

  • Stanković T, Shea K, Štorga M, Marjanović D (2009) Grammatical evolution of technical processes. In: Proceedings of the ASME international design engineering technical conferences and computers and information in engineering conference (IDETC/CIE 2009). San Diego, California

  • Starling AC, Shea K (2005) A parallel grammar for simulation-driven mechanical design synthesis. In: Proceedings of the ASME international design engineering technical conferences and computers and information in engineering conference (IDETC/CIE 2005). Long Beach, California

  • Stiny G (2006) Shape: talking about seeing and doing. MIT Press, Cambridge

    Google Scholar 

  • Stone RB, Wood KL, Crawford RH (2000) A heuristic method for identifying modules for product architectures. Des Stud 21:5–31. doi:10.1016/S0142-694X(99)00003-4

    Article  Google Scholar 

  • Stumptner M, Friedrich GE, Haselböck A (1998) Generative constraint-based configuration of large technical systems. AIEDAM 12:307–320. doi:10.1017/S0890060498124046

    Article  Google Scholar 

  • Suh ES, Furst MR, Mihalyov KJ, de Weck OL (2008) Technology infusion: an assessment framework and case study. In: Proceedings of the ASME international design engineering technical conferences and computers and information in engineering conference (IDETC/CIE 2008). Brooklyn, New York, USA

  • Summers JD, Shah JJ (2010) Mechanical engineering design complexity metrics: size, coupling, and solvability. J Mech Des 132:021004.1–02100411. doi:10.1115/1.4000759

    Article  Google Scholar 

  • Sun Microsystems (2006) Java SE version 6. http://java.sun.com

  • Ulrich KT (1995) The role of product architecture in the manufacturing firm. Res Policy 24:419–440

    Article  Google Scholar 

  • Ulrich KT, Seering WP (1989) Synthesis of schematic descriptions in mechanical design. Res Eng Des 1:3–18

    Article  Google Scholar 

  • Umeda Y, Ishii M, Yoshioka M, Shimomura Y, Tomiyama T (1996) Supporting conceptual design based on the function-behavior-state modeler. AIEDAM 10:275–288

    Article  Google Scholar 

  • Wood KL, Greer JL (2001) Function-based synthesis methods in engineering design. In: Antonsson EK, Cagan J (eds) Formal engineering design synthesis. Cambridge University Press, Cambridge, pp 170–227

    Chapter  Google Scholar 

  • Wyatt DF, Eckert CM, Clarkson PJ (2009a) Design of product architectures in incrementally developed complex products. In: Proceedings of the international conference on engineering design (ICED ‘09). Palo Alto, California

  • Wyatt DF, Wynn DC, Clarkson PJ (2009b) Exploring spaces of system architectures using constraint-based classification and Euler diagrams. In: Proceedings of the international design structure matrix conference (DSM’09). Greenville, South Carolina

  • Wynn DC, Nair SM, Clarkson PJ (2009) The P3 platform: an approach and software system for developing diagrammatic model-based methods in design research. In: Norell Bergendahl M, Grimheden M, Leifer L, Skogstad P, Lindemann U (eds) Proceedings of the international conference on engineering design (ICED ‘09). Palo Alto, California, USA, pp 559–570

  • Xie YM, Steven GP (1997) Evolutionary structural optimisation. Springer, London

    Book  Google Scholar 

  • XML Schema Working Group (2004) XML Schema. http://www.w3.org/TR/xmlschema-1

  • Yang MC (2008) Observations on concept generation and sketching in engineering design. Res Eng Des 20:1–11. doi:10.1007/s00163-008-0055-0

    Article  Google Scholar 

  • Yassine AA, Wissmann LA (2007) The implications of product architecture on the firm. Sys Eng 10:118–137

    Article  Google Scholar 

  • Ziv-Av A, Reich Y (2005) SOS–subjective objective system for generating optimal product concepts. Des Stud 26:509–533

    Article  Google Scholar 

  • Zwicky F (1969) Discovery, invention, research–through the morphological approach. Macmillian, Toronto

    Google Scholar 

Download references

Acknowledgments

The authors thank the engineers at the case study company and Claudia Eckert of the Open University for her assistance with carrying out the interviews. They also thank the members of the Cambridge Engineering Design Centre who took part in the usability evaluation described in Sect. 6.1, and the three anonymous reviewers for their insightful comments. Figure 2 is reproduced from Starling and Shea (2005), originally published by ASME, and the images of bicycle lights in Fig. 19b–d are reproduced by kind permission of Pedalite International Ltd (http://www.pedalite.com), Reelight ApS (http://www.reelight.com) and Brando WorkShop (http://www.gadget.brando.com). This research was funded by the George and Lilian Schiff Studentship and the UK Engineering and Physical Sciences Research Council (grant reference EP/E001777/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David F. Wyatt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wyatt, D.F., Wynn, D.C., Jarrett, J.P. et al. Supporting product architecture design using computational design synthesis with network structure constraints. Res Eng Design 23, 17–52 (2012). https://doi.org/10.1007/s00163-011-0112-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00163-011-0112-y

Keywords

Navigation