Skip to main content
Log in

Formation and behavior of counter-rotating vortex rings

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

Concentric, counter-rotating vortex ring formation by transient jet ejection between concentric cylinders was studied numerically to determine the effects of cylinder gap ratio, \(\frac{\Delta R}{R}\), and jet stroke length-to-gap ratio, \(\frac{L}{\Delta R}\), on the evolution of the vorticity and the trajectories of the resulting axisymmetric vortex pair. The flow was simulated at a jet Reynolds number of 1000 (based on \(\Delta R\) and the jet velocity), \(\frac{L}{\Delta R} \) in the range 1–20, and \(\frac{\Delta R}{R}\) in the range 0.05–0.25. Five characteristic flow evolution patterns were observed and classified based on \(\frac{L}{\Delta R} \) and \(\frac{\Delta R}{R}\). The results showed that the relative position, relative strength, and radii of the vortex rings during and soon after formation played a prominent role in the evolution of the trajectories of their vorticity centroids at the later time. The conditions on relative strength of the vortices necessary for them to travel together as a pair following formation were studied, and factors affecting differences in vortex circulation following formation were investigated. In addition to the characteristics of the primary vortices, the stopping vortices had a strong influence on the initial vortex configuration and effected the long-time flow evolution at low \(\frac{L}{\Delta R}\) and small \(\frac{\Delta R}{R}\). For long \(\frac{L}{\Delta R} \) and small \(\frac{\Delta R}{R}\), shedding of vorticity was sometimes observed and this shedding was related to the Kelvin–Benjamin variational principle of maximal energy for steadily translating vortex rings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Crow, S.C., Champagne, F.H.: Orderly structure in jet turbulence. J. Fluid Mech. 48, 547–591 (1971)

    Article  Google Scholar 

  2. Shariff, K., Leonard, A.: Vortex rings. Annu. Rev. Fluid Mech. 24(1), 235–279 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  3. Lim, T.T., Nickels, T.B.: Vortex rings. Fluid Vortices 30, 95–153 (1995)

    Article  Google Scholar 

  4. Weidman, P.D., Riley, N.: Vortex ring pairs: numerical simulation and experiment. J. Fluid Mech. 257, 311–337 (1993)

    Article  MathSciNet  Google Scholar 

  5. Wakelin, S., Riley, N.: On the formation and propagation of vortex rings and pairs of vortex rings. J. Fluid Mech. 332, 12–13 (1997)

    Article  MATH  Google Scholar 

  6. Kambe, T., Takao, T.: Motion of distorted vortex rings. J. Phys. Soc. Jpn. 31, 591–599 (1971)

    Article  Google Scholar 

  7. Yamada, H., Matsui, T.: Mutual slip-through of a pair of vortex rings. Phys. Fluids 22, 1245–1249 (1979)

    Article  Google Scholar 

  8. Oshima, Y.: Head-on collision of two vortex rings. J. Phys. Soc. Jpn. 44, 328–331 (1978)

    Article  Google Scholar 

  9. Stanaway, S., Shariff, K., Hussain, F.: Head-on collision of viscous vortex rings. In: Proc. Summer Progr. pp. 287–309 (1988)

  10. Borisov, A., Kilin, A., Mamaev, I.: The dynamics of vortex rings: leapfrogging, choreographies and the stability problem. Regul. Chaotic Dyn. 8, 33–62 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Sadri, V., Krueger, P.S.: Pinch-off of axisymmetric vortex pairs in the limit of vanishing vortex line curvature. Phys. Fluids 28, 71701 (2016)

    Article  Google Scholar 

  12. Flór, J.B., Van Heijst, G.J.F.: An experimental study of dipolar vortex structures in a stratified fluid. J. Fluid Mech. 279, 101–133 (1994)

    Article  Google Scholar 

  13. Afanasyev, Y.D.: Formation of vortex dipoles. Phys. Fluids 18, 37103 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. van Heijst, G.J.F., Kloosterziel, R.C., Williams, C.W.M.: Laboratory experiments on the tripolar vortex in a rotating fluid. J. Fluid Mech. 225, 301–331 (1991)

    Article  Google Scholar 

  15. Moffatt, H., Kida, S., Ohkitani, K.: Stretched vortices-the sinews of turbulence; large-Reynolds-number asymptotics. J. Fluid Mech. 259, 241–264 (1994)

    Article  MathSciNet  Google Scholar 

  16. Le Dizès, S.: Non-axisymmetric vortices in two-dimensional flows. J. Fluid Mech. 406, 175–198 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. Leweke, T., Le Dizès, S., Williamson, C.H.K.: Dynamics and instabilities of vortex pairs. Annu. Rev. Fluid Mech. 48, 507–541 (2016)

    Article  MATH  Google Scholar 

  18. Rausch, R.D., Yang, H.T.Y., Batina, J.T.: Spatial adaption procedures on unstructured meshes for accurate unsteady aerodynamic flow computation. Rep. técnico AIAA-91-1106. (1991)

  19. Leer, B.Van: Towards the ultimate conservative difference scheme. V.A second-order sequel to godunoves method. J. Comput. Phys. 32, 101–136 (1979)

    Article  MATH  Google Scholar 

  20. Ferziger, J., Peric, M.: Computational Methods for Fluid Dynamics. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  21. Celik, I., Ghia, U., Roache, P.: Procedure for estimation and reporting of uncertainty due to discretization in CFD applications. J. Fluids Eng. 130, 78001 (2008)

    Article  Google Scholar 

  22. Saffman, P.: Vortex Dynamics. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  23. Trieling, R.R., Beckers, M., Van Heijst, G.J.F.: Dynamics of monopolar vortices in a strain flow. J. Fluid Mech. 345, 165–201 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  24. Yoon, S.S., Heister, S.D.: Analytical formulas for the velocity field induced by an infinitely thin vortex ring. Int. J. Numer. Methods Fluids. 44, 665–672 (2004)

    Article  MATH  Google Scholar 

  25. Didden, N.: On the formation of vortex rings: rolling-up and production of circulation. Z. Angew. Math. Phys. (ZAMP) 30, 101–116 (1979)

    Article  Google Scholar 

  26. Tong, D., Shan, L.: Exact solutions for generalized Burgers’ fluid in an annular pipe. Meccanica 44, 427–431 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Benjamin, T.B.: The Alliance of Practical and Analytic Insights into the Nonlinear Problems of Fluid Mechanics. Springer, Berlin (1976)

    MATH  Google Scholar 

  28. Gharib, M., Rambod, E., Shariff, K.: A universal time scale for vortex ring formation. J. Fluid Mech. 360, 121–140 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  29. Nitsche, M.: Self-similar shedding of vortex rings. J. Fluid Mech. 435, 397–407 (2001)

    Article  MATH  Google Scholar 

  30. Klein, R., Majda, A.J., Damodaran, K.: Simplified equations for the interaction of nearly parallel vortex filaments. J. Fluid Mech. 288, 201–248 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  31. Fabre, D., Jacquin, L., Loof, A.: Optimal perturbations in a four-vortex aircraft wake in counter-rotating configuration. J. Fluid Mech. 451, 319–328 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. S. Krueger.

Additional information

Communicated by Tim Colonius.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadri, V., Krueger, P.S. Formation and behavior of counter-rotating vortex rings. Theor. Comput. Fluid Dyn. 31, 369–390 (2017). https://doi.org/10.1007/s00162-017-0425-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-017-0425-1

Keywords

Navigation