Skip to main content
Log in

Numerical Analysis on Effect of Jet Injection on Vortex Shedding for Flow Over a Circular Cylinder

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Two-dimensional numerical investigations on the flow characteristics past a circular cylinder with a jet injection at the rear stagnation point are performed. Transient, incompressible, laminar, and isothermal flow governing equations are solved with finite volume method. Numerical simulations have been carried out at a Reynolds number of 150 with different injection ratios (IR) ranging from 0.5 to 7. Time evolutions of the coefficients of drag and lift, and streamline patterns are plotted. Three different flow pattern ranges are observed, namely wake dominant (IR\(\,=\,\)0–1.5), transition (IR\(\,=\,\)1.5–2.5) and jet dominant (IR > 2.5), and they are characterized by the combined effects of vortex shedding, undulation and jet dominant phenomena appearing in the flow downstream. It is also found that \(C_{\mathrm{d}}\) decreases slightly with the injection ratio up to 1.5, after that it monotonically increases with the injection ratio. The similar incremental trend is observed in the Strouhal number variation with IR up to 1.5; then, it increases almost linearly till IR\(\,=\,\)4. When IR is greater than 4, there is a sudden drop in the Strouhal number value equal to zero and it remains constant after that for all the IR values considered in this study. The power spectral density of \(C_{\mathrm{l} }\) indicates that the dominant frequency is present for the lower IR up to 4 and that no dominant frequency appears in the higher injection ratio range of 5–7 due to a complete suppression of the vortex shedding behind the cylinder by a dominant jet mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

IR:

Injection ratio

D :

Cylinder diameter

\(u_{\mathrm{j}}\) :

Jet velocity

\(U_{\infty }\) :

Free stream velocity

\(L_{\mathrm{u}}\) :

Upstream domain length

\(L_{\mathrm{d}}\) :

Downstream domain length

H :

Domain height

f :

Shedding frequency

St:

Strouhal number

\(C_{\mathrm{l}}\) :

Lift coefficient

\(C_{\mathrm{d}}\) :

Drag coefficient

WDR:

Wake dominated range

TR:

Transition range

JDR:

Jet dominated range

PSD:

Power spectral density

x :

Axial direction

y :

Transverse direction

u :

Velocity in the x-direction

v :

Velocity in the y-direction

p :

Pressure

\(\nu \) :

Kinematic viscosity

\(\rho \) :

Density

t :

Time

\(t_{\mathrm{c}}\) :

Time taken for repeating one half cycle

References

  1. Ong, M.C.; Utnes, T.; Holmedal, L.E.; Myrhaug, D.; Pettersen, B.: Numerical simulation of flow around a smooth circular cylinder at very high Reynolds numbers. J. Mar. Struct. 22(2), 142–153 (2009)

    Article  Google Scholar 

  2. Gillies, E.A.: Low dimensional control of the circular cylinder wake. J. Fluid Mech. 371, 157–178 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Wille, R.: Generation of oscillatory flows. In: Naudascher, E. (ed.) Flow-Induced Structural Vibration, pp. 1–16. Springer, Berlin (1974)

    Google Scholar 

  4. Williamson, C.H.K.; Govardhan, R.: Vortex-induced vibrations. Annu. Rev. Fluid Mech. 36, 413–455 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. You, D.; Choi, H.; Choi, M.R.; Kang, S.H.: Control of flow induced noise behind a circular cylinder using splitter plates. AIAA J. 36(11), 1961–1967 (1998)

    Article  Google Scholar 

  6. Karthikeyan, S.; Senthilkumar, S.: Control of vortex shedding behind a circular cylinder using a combination of slot and control plates. In: Saha, A., Das, D., Srivastava, R., Panigrahi, P., Muralidhar, K. (eds.) Fluid Mechanics and Fluid Power—Contemporary Research. Lecture Notes in Mechanical EngineeringSpringer, New Delhi (2017)

    Google Scholar 

  7. Roshko, A.: Perspectives on bluff body aerodynamics. J. Wind Eng. Ind. Aerodyn. 49, 79–100 (1993)

    Article  Google Scholar 

  8. Unal, M.F.; Rockwell, D.: On vortex formation from a cylinder, part II: control by splitter-plate interference. J. Fluid Mech. 190, 491–512 (1988)

    Article  Google Scholar 

  9. Oertel Jr., H.: Wakes behind blunt bodies. Annu. Rev. Fluid Mech. 22, 539–564 (1990)

    Article  MathSciNet  Google Scholar 

  10. Pier, B.: On the frequency selection of finite-amplitude vortex shedding in the cylinder wake. J. Fluid Mech. 458, 407–417 (2002)

    Article  MATH  Google Scholar 

  11. Chomaz, J.M.: Global instability in spatially developing flows: non-normality and non-linearity. Annu. Rev. Fluid Mech. 37, 367–392 (2005)

    Article  MathSciNet  Google Scholar 

  12. Hwang, Y.; Choi, H.: Control of absolute instability by basic flow modification in a parallel wake at low Reynolds number. J. Fluid Mech. 560, 465–475 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hwang, Y.; Choi, H.: Sensitivity of global instability of spatially developing flow in weakly and fully nonlinear regimes. Phys. Fluids 20, 071073 (2008)

    Article  MATH  Google Scholar 

  14. Marais, C.; Godoy-Diana, R.; Barkley, D.; Wesfreid, J.E.: Convective instability in inhomogeneous media: impulse response in the subcritical cylinder wake. Phys. Fluids 23, 014104 (2011)

    Article  Google Scholar 

  15. Baek, S.; Sung, H.J.: Numerical simulation of the flow behind a rotary oscillating circular cylinder. Phys. Fluids 10, 869 (1998)

    Article  Google Scholar 

  16. Cetiner, O.; Rockwell, D.: Stream-wise oscillations of a cylinder in a steady current. Part 1: locked-on states of vortex formation and loading. J. Fluid Mech. 427, 128 (2001)

    MATH  Google Scholar 

  17. Blackburn, H.; Henderson, R.: A study of two-dimensional flow past an oscillating cylinder. J. Fluid Mech. 385, 255–286 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Artana, G.; Sosa, R.; Moreau, E.; Touchard, G.: Control of the near-wake flow around a circular cylinder with electro-hydrodynamic actuators. Exp. Fluids 35(6), 580–588 (2003)

    Article  Google Scholar 

  19. Zhdanov, V.L.; Isaev, S.A.; Niemann, H.J.: Control of the near wake of a circular cylinder in blowing out of low-head jets. J. Eng. Phys. Thermophys. 74(5), 1100–1103 (2001)

    Article  Google Scholar 

  20. Fransson, J.H.M.; Konieczny, P.; Alfredson, P.H.: Flow around a porous cylinder subject to continuous suction or blowing. J. Fluid Struct. 19, 1031–1048 (2004)

    Article  Google Scholar 

  21. Bhattacharyya, S.; Maiti, D.K.; Dhinakaran, S.: Influence of buoyancy on vortex shedding and heat transfer from a square cylinder in proximity to a wall. Numer. Heat Transf. Part A Appl. 50(6), 585–606 (2006)

    Article  Google Scholar 

  22. Strykowski, P.J.; Sreenivasan, K.R.: On the formation and suppression of vortex shedding at low Reynolds numbers. J. Fluid Mech. 218, 71–107 (1990)

    Article  Google Scholar 

  23. Mittal, S.; Raghuvanshi, A.: Control of vortex shedding behind circular cylinder for flows at low Reynolds numbers. Int. J. Numer. Methods Fluids 35, 421–447 (2001)

    Article  MATH  Google Scholar 

  24. Kuo, C.H.; Chiou, L.C.; Chen, C.C.: Wake flow pattern modified by small control cylinders at low Reynolds number. J. Fluids Struct. 23, 938–956 (2007)

    Article  Google Scholar 

  25. Kuo, C.H.; Chen, C.C.: Passive control of wake flow by two small control cylinders at Reynolds number 80. J. Fluids Struct. 25, 1021–1028 (2009)

    Article  Google Scholar 

  26. Igarashi, T.: Drag reduction of a square prism by flow control using a small rod. J. Wind Eng. Ind. Aerodyn. 69–71, 141–153 (1997)

    Article  Google Scholar 

  27. Sarioglu, M.; Akansu, Y.E.; Yavuz, T.: Control of flow around square cylinders at incidence by using a rod. AIAA J. 43(7), 1419–1426 (2005)

    Article  Google Scholar 

  28. Choi, H.; Jeon, W.P.; Kim, J.: Control of flow over a bluff body. Annu. Rev. Fluid Mech. 40, 113–139 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Mathelin, L.; Bataille, F.; Lallemand, A.: The effect of uniform blowing on the flow past a circular cylinder. ASME. J. Fluids Eng. 124(2), 452–464 (2002)

    Article  Google Scholar 

  30. Ladd, D.; Park, D.; Hendricks, E.; Nosseir, N.: Active control of oscillatory lift forces on a circular cylinder. In: AIAA Shear Flow Conference. AIAA 93-3277, July 6–9, Orlando, FL, USA (1993)

  31. Apacoglu, B.; Paksoy, A.; Aradag, S.: Effects of air blowing on turbulent flow over a circular cylinder. J. Therm. Sci. Technol. 32(2), 107–119 (2012)

    Google Scholar 

  32. Saha, A.K.; Ankit, S.: Suppression of vortex shedding around a square cylinder using blowing. Sadhana 40(3), 769–785 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  33. Sen, U.; Mukhopadhyay, A.; Sen, S.: Effects of fluid injection on dynamics of flow past a circular cylinder. Eur. J. Mech. B Fluids 61, 187–199 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  34. Huang, R.F.; Hsu, C.M.; Chen, Y.T.: Modulating flow and aerodynamic characteristics of a square cylinder in cross flow using a rear jet injection. Phys. Fluids 29, 015103 (2017). https://doi.org/10.1063/1.4972982

    Article  Google Scholar 

  35. Gao, D.L.; Chen, W.L.; Li, H.; Hu, H.: Flow around a circular cylinder with slit. Exp. Therm. Fluid Sci. 82, 287–301 (2017)

    Article  Google Scholar 

  36. Pantokratoras, A.: Laminar flow across an unbounded square cylinder with suction or injection. Z. Angew. Math. Phys. 68(1), 1 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  37. Versteeg, H.K.; Malalasekera, W.: An Introduction to Computational Fluid Dynamics: The Finite Volume Method. Pearson Prentice Hall, London (2007)

    Google Scholar 

  38. Braza, M.; Chassaing, P.; Minh, H.H.: Numerical study and physical analysis of the pressure and velocity fields in the near wake of a circular cylinder. J. Fluid Mech. 165, 79–130 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  39. Lima E Silva, A.L.F.; Silveira-Neto, A.; Damasceno, J.J.R.: Numerical simulation of two-dimensional flows over a circular cylinder using the immersed boundary method. J. Comput. Phys. 189, 351–370 (2003)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Senthilkumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karthikeyan, S., Senthilkumar, S., Kannan, B.T. et al. Numerical Analysis on Effect of Jet Injection on Vortex Shedding for Flow Over a Circular Cylinder. Arab J Sci Eng 44, 1475–1488 (2019). https://doi.org/10.1007/s13369-018-3588-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-3588-1

Keywords

Navigation