Skip to main content
Log in

Subgrid-scale turbulence in shock–boundary layer flows

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

Data generated by direct numerical simulation (DNS) for a Mach 2.75 zero-pressure gradient turbulent boundary layer interacting with shocks of different intensities are used for a priori analysis of subgrid-scale (SGS) turbulence and various terms in the compressible filtered Navier–Stokes equations. The numerical method used for DNS is based on a hybrid scheme that uses a non-dissipative central scheme in the shock-free turbulent regions and a robust monotonicity-preserving scheme in the shock regions. The behavior of SGS stresses and their components, namely Leonard, Cross and Reynolds components, is examined in various regions of the flow for different shock intensities and filter widths. The backscatter in various regions of the flow is found to be significant only instantaneously, while the ensemble-averaged statistics indicate no significant backscatter. The budgets for the SGS kinetic energy equation are examined for a better understanding of shock–tubulence interactions at the subgrid level and also with the aim of providing useful information for one-equation LES models. A term-by-term analysis of SGS terms in the filtered total energy equation indicate that while each term in this equation is significant by itself, the net contribution by all of them is relatively small. This observation is consistent with our a posteriori analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams N.A.: Direct numerical simulation of turbulent compression ramp flow. Theor. Comput. Fluid Dyn. 12(2), 109–129 (1998)

    Article  MATH  Google Scholar 

  2. Adams N.A.: Direct simulation of the turbulent boundary layer along a compression ramp at M = 3 and \({Re_{\theta}=1,685}\). J. Fluid Mech. 420, 47–83 (2000)

    Article  MATH  Google Scholar 

  3. Ducros F., Laporte F., Souleres T., Guinot V., Moinat P., Caruelle B.: High-order fluxes for conservative skew-symmetric-like schemes in structured meshes: application to compressible flows. J. Comput. Phys. 161(1), 114–139 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  4. Dupont P., Haddad C., Debieve J.F.: Space and time organization in a shock-induced separated boundary layer. J. Fluid Mech. 559, 255–277 (2006)

    Article  MATH  Google Scholar 

  5. Garnier E., Sagaut P., Deville M.: Large eddy simulation of shock/boundary layer interaction. AIAA J. 40(10), 1935–1944 (2002)

    Article  Google Scholar 

  6. Germano M.: A proposal for a redefinition of the turbulent stresses in the filtered Navier–Stokes equations. Phys. Fluids 29(7), 2323–2324 (1986)

    Article  MATH  Google Scholar 

  7. Huynh H.T.: Accurate monotone cubic interpolation. SIAM J. Numer. Anal. 30(1), 57–100 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  8. Jammalamadaka A., Li Z., Jaberi F.A.: Subgrid scale models for large-eddy simulations of shock/turbulent boundary layer interactions. AIAA J. 51(5), 1174–1188 (2013)

    Article  Google Scholar 

  9. Jammalamadaka A., Li Z., Jaberi F.A.: Numerical investigations of shock wave interactions with a supersonic turbulent boundary layer. Phys. Fluids 26(5), 056101 (2014)

    Article  Google Scholar 

  10. Knight, D., Zhou, G., Okong’o, N., Shukla, V.: Compressible Large Eddy Simulation using Unstructured Grids. In: AIAA Paper No. 98-0535 (1998)

  11. Larsson J., Lele S.K.: Direct numerical simulation of canonical shock/turbulence interaction. Phys. Fluids 21, 126101 (2009)

    Article  Google Scholar 

  12. Lele S.K.: Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103(1), 16–42 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  13. Li Z., Jaberi F.A.: High-order finite difference schemes for numerical simulations of supersonic turbulent flows. Int. J. Numer. Methods Fluids 68(6), 740–766 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  14. Liu X.D., Osher S., Chan T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115, 200–212 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  15. Loginov M.S., Adams N.A., Zheltovdov A.A.: Large eddy simulation of shock-wave/turbulent-boundary-layer interaction. J. Fluid Mech. 565, 135–169 (2006)

    Article  MATH  Google Scholar 

  16. Martin M.P., Piomelli U., Candler G.V.: Subgrid-scale models for compressible large-eddy simulations. Theor. Comput. Fluid Dyn. 13, 361–376 (2000)

    MATH  Google Scholar 

  17. Piomelli U.: Large-eddy simulation: achievements and challenges. Prog. Aerosp. Sci. 35(4), 335–363 (1999)

    Article  Google Scholar 

  18. Pirozzoli S.: Generalized conservative approximations of split convective derivative operators. J. Comput. Phys. 229, 7180–7190 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  19. Pirozzoli S.: Numerical methods for high-speed flows. Annu. Rev. Fluid Mech. 43, 163–194 (2011)

    Article  MathSciNet  Google Scholar 

  20. Pirozzoli, S., Bernardini, M.: Direct numerical simulation database for impinging shock wave/turbulent boundary-layer interaction. AIAA J. 49(6), 1307–1312 (2011a)

  21. Pirozzoli, S., Bernardini, M.: Turbulence in supersonic boundary layers at moderate Reynolds number. J. Fluid Mech. 688, 120–168 (2011b)

  22. Pirozzoli S., Beer A., Bernardini M., Grasso F.: Computational analysis of impinging shock-wave boundary layer interaction under conditions of incipient separation. Shock Waves 19(6), 487–497 (2009)

    Article  MATH  Google Scholar 

  23. Pirozzoli S., Bernardini M., Grasso F.: Direct numerical simulation of transonic shock/boundary layer interaction under conditions of incipient separation. J. Fluid Mech. 657, 361–393 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  24. Poinsot T.J., Lele S.K.: Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys. 101(1), 104–129 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  25. Priebe S., Martin M.P.: Low-frequency unsteadiness in shock wave–turbulent boundary layer interaction. J. Fluid Mech. 699, 1–49 (2012)

    Article  MATH  Google Scholar 

  26. Roe P.L.: Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 135, 250–258 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  27. Salvetti M.V., Banerjee S.: A priori tests of a new dynamic subgrid-scale model for finite-difference large-eddy simulations. Phys. Fluids 7(11), 2831–2847 (1995)

    Article  MATH  Google Scholar 

  28. Sandham N.D., Li Q., Yee H.C.: Entropy splitting for high-order simulation of compressible turbulence. J. Comput. Phys. 178(2), 307–322 (2002)

    Article  MATH  Google Scholar 

  29. Simpson R.L.: Turbulent boundary layer separation. Annu. Rev. Fluid Mech. 21, 205–234 (1989)

    Article  Google Scholar 

  30. Stolz S., Adams N.A.: Large-eddy simulation of high-Reynolds number supersonic boundary layers using the approximate deconvolution model and a rescaling and recycling technique. Phys. Fluids 15(8), 2398–2412 (2003)

    Article  Google Scholar 

  31. Stolz S., Adams N.A., Kleiser L.: The approximate deconvolution model for large-eddy simulations of compressible flows and its application to shock-turbulent-boundary-layer interaction. Phys. Fluids 13(10), 2985–3001 (2001)

    Article  Google Scholar 

  32. Suresh A., Huynh H.T.: Accurate monotonicity-preserving schemes with Runge–Kutta time stepping. J. Comput. Phys. 136(1), 83–99 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  33. Thompson, K.W.: Time dependent boundary conditions for hyperbolic systems, II. J. Comput. Phys. 89(2), 439–461 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  34. Touber, E., Sandham, N.D.: Comparison of three large-eddy simulations of shock-induced turbulent separation bubbles. Shock Waves 19, 469–478 (2009a)

  35. Touber, E., Sandham, N.D.: Large-eddy simulation of low-frequency unsteadiness in a turbulent shock-induced separation bubble. Theor. Comput. Fluid Dyn. 23(2), 79–107 (2009b)

  36. Vreman, B., Geurts, B., Kuerten, H.: Subgrid-modelling in LES of compressible flow. Appl. Sci. Res. 54, 191–203 (1995a)

  37. Vreman, B., Geurts, B., Kuerten, H.: A priori tests of large eddy simulation of compressible mixing layer. J. Eng. Math. 29(5), 299–327 (1995b)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avinash Jammalamadaka.

Additional information

Communicated by Sutanu Sarkar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jammalamadaka, A., Jaberi, F. Subgrid-scale turbulence in shock–boundary layer flows. Theor. Comput. Fluid Dyn. 29, 29–54 (2015). https://doi.org/10.1007/s00162-015-0339-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-015-0339-8

Keywords

Navigation