Skip to main content
Log in

Thermodynamical properties of triangular quantum wires: entropy, specific heat, and internal energy

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

In the present work, thermodynamical properties of a GaAs quantum wire with equilateral triangle cross section are studied. First, the energy levels of the system are obtained by solving the Schrödinger equation. Second, the Tsallis formalism is applied to obtain entropy, internal energy, and specific heat of the system. We have found that the specific heat and entropy have certain physically meaningful values, which mean thermodynamic properties cannot take any continuous value, unlike classical thermodynamics in which they are considered as continuous quantities. Maximum of entropy increases with increasing the wire size. The specific heat is zero at special temperatures. Specific heat decreases with increasing temperature. There are several peaks in specific heat, and these are dependent on quantum wire size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bimberg D., Grudmann M., Ledentsov N.N.: Quantum Dot Heterostructures. Wiley, New York (1999)

    Google Scholar 

  2. Karan S., Dutta Majumder D., Goswami A.: A mathematical formalism of self assembly for design and fabrication of nanostructured materials: a new paradigm for nanotechnology. Indian J. Phys. 86, 667–676 (2012)

    Article  ADS  Google Scholar 

  3. Karabulut I., Duque C.A.: Nonlinear optical rectification and optical absorption in GaAsGa 1-x Al x As double quantum wells under applied electric and magnetic fields. Phys. E 43, 1405–1410 (2011)

    Article  Google Scholar 

  4. Khordad R.: Second and third-harmonic generation of parallelogram quantum wires: electric field. Indian J. Phys. 88, 275–281 (2014)

    Article  Google Scholar 

  5. Lozovski V., Piatnytsia V.: The analytical study of electronic and optical properties of pyramid-like and cone-like quantum dots. J. Comput. Theor. Nanosci. 8, 2335–2343 (2011)

    Article  Google Scholar 

  6. Lu M., Yang X.J., Perry S.S., Rabalais J.W.: Self-organized nanodot formation on MgO(100) by ion bombardment at high temperatures. Appl. Phys. Lett. 80, 2096–2101 (2002)

    Article  ADS  Google Scholar 

  7. Khordad R., Bahramiyan H.: Electron–phonon interaction effect on the energy levels and diamagnetic susceptibility of quantum wires: parallelogram and triangle cross section. J. Appl. Phys. 115, 124314–124320 (2014)

    Article  ADS  Google Scholar 

  8. Xie W.: Linear and nonlinear optical properties of a hydrogenic donor in spherical quantum dots. Phys. B 403, 4319–4322 (2008)

    Article  ADS  Google Scholar 

  9. Khordad R., Sadeghzadeh M.A., Mohamadian Jahan-Abad A.: Specific heat of a parabolic cylindrical quantum dot in the presence of magnetic field. Superlattices Microstruct. 58, 11–19 (2013)

    Article  ADS  Google Scholar 

  10. Chen C.Y., You Y., Wang X.H., Dong S.H.: Exact solutions of the Schrödinger equation with double ring-shaped oscillator. Phys. Lett. A 377, 1521–1525 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Bahramiyan H., Khordad R., Azari H.: Electron phonon interaction influence on optical properties of parallelogram quantum wires. Int. J. Mod. Phys. B 28, 1450142–1450153 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Yu Y.B., Zhu S.N., Guo K.X.: Electron–phonon interaction effect on optical absorption in cylindrical quantum wires. Solid State Commun. 139, 76–79 (2006)

    Article  ADS  Google Scholar 

  13. Muscato O., Stefano V.D., Moschetti G.: Thermoelectric effects in silicon quantum wires. Commun. Appl. Ind. Math. 3, 414–419 (2012)

    MathSciNet  MATH  Google Scholar 

  14. Aydin, A., Sisman, A.: Discrete nature of thermodynamics properties. In: 12th Joint European Thermodynamics Conference, Proceedings of JETC, pp. 425–429 (2013)

  15. Khordad R.: Study of specific heat of quantum pseudodot under magnetic field. Int. J. Thermophys. 34, 1148–1157 (2013)

    Article  ADS  Google Scholar 

  16. Ibragimov G.B.: Free-carrier magnetoabsorption in quantum well wires. J. Phys. Condens. Matter 15, 8949–8954 (2003)

    Article  ADS  Google Scholar 

  17. Sharma B.D., Mittal D.P.: New non-additive measures of entropy for discrete probability distributions. J. Math. Sci. 10, 28–40 (1975)

    MathSciNet  Google Scholar 

  18. Landsberg P.T., Vedral V.: Distributions and channel capacities in generalized statistical mechanics. Phys. Lett. A 247, 211–217 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Kaniadakis G.: Statistical mechanics in the context of special relativity. Phys. Rev. E 66, 056125–056131 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  20. R’enyi A.: Probability Theory. North Holland, Amsterdam (1970)

    Google Scholar 

  21. Tsallis C., Souza A.: Constructing a statistical mechanics for Beck–Cohen superstatistics. Phys. Rev. E 67, 026106–026112 (2003)

    Article  ADS  Google Scholar 

  22. Binney J., Tremaine S.: Galactic Dynamics. Princeton University Press, Princeton (1987)

    MATH  Google Scholar 

  23. Saslaw W.C.: Gravitational Physics of Stellar and Galactic Systems. Cambridge University Press, Cambridge (1985)

    Book  Google Scholar 

  24. Risken H.: The Fokker–Planck Equation. Springer, Berlin (1984)

    MATH  Google Scholar 

  25. Huang X.P., Driscoll C.F.: Relaxation of 2D turbulence to a metaequilibrium near the minimum enstrophy state. Phys. Rev. Lett. 72, 2187–2191 (1994)

    Article  ADS  Google Scholar 

  26. Tsallis C.: Possible generalization of Boltzmann–Gibbs statistics. J. Stat. Phys. 52, 479–487 (1988)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Kaniadakis G., Lissia M., Scarfone A.M.: Deformed logarithms and entropies. Phys. A 340, 41–49 (2004)

    Article  MathSciNet  Google Scholar 

  28. La Cour, B.R., Schieve, W.C.: A comment on the Tsallis maximum entropy principle. arXiv:cond-mat/0009216v1 [cond-mat.stat-mech], 3 p. (2000)

  29. Road, M.E.: Generalized information and entropy measures in physics. arXiv:0902.1235v2 [cond-mat.stat-mech], 23 p. (2009)

  30. Biro T.S., Barnafoldi G.G., Van P.: Thermodynamic derivation of the Tsallis and Rényi entropy formulas and the temperature of Quark–Gluon plasma. Eur. Phys. J. A 49, 110–113 (2012)

    Article  ADS  Google Scholar 

  31. Khordad R., Sadeghzadeh M.A., Mohamadian Jahan-Abad A.: Effect of magnetic field on internal energy and entropy of a parabolic cylindrical quantum dot. Commun. Theor. Phys. 59, 655–660 (2013)

    Article  ADS  Google Scholar 

  32. Khordad R., Mirhosseini B.: Internal energy and entropy of a quantum pseudodot. Phys. B 420, 10–14 (2013)

    Article  ADS  Google Scholar 

  33. Li W.K., Blinder S.M.: Solution of the Schrödinger equation for a particle in an equilateral triangle. J. Math. Phys. 26, 2784–2790 (1985)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Gorley P.N., Vorobiev Y.V., Hernandez J.G., Horley P.P.: Analytical solution of the Schrödinger equation for an electron confined in a triangle-shaped quantum well. Microelectron. Eng. 66, 39–45 (2003)

    Article  Google Scholar 

  35. da silva E.P., Tsallis C., Curado E.M.F: Specific heat of a free particle in a generalized Boltzmann–Gibbs statistics. Phys. A 199, 137–153 (1993)

    Article  MathSciNet  Google Scholar 

  36. Tsallis C., Mendes R.S., Plastino A.R.: The role of constraints within generalized nonextensive statistics. Phys. A 261, 534–554 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Khordad.

Additional information

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khordad, R. Thermodynamical properties of triangular quantum wires: entropy, specific heat, and internal energy. Continuum Mech. Thermodyn. 28, 947–956 (2016). https://doi.org/10.1007/s00161-015-0429-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-015-0429-2

Keywords

Navigation