Skip to main content
Log in

Shape and topology optimization of acoustic lens system using phase field method

  • INDUSTRIAL APPLICATION
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

A layout optimization method for a two-dimensional acoustic lens system used in underwater imaging is presented. To this end, a shape and topology optimization is formulated for the design problem of a lens system for the first time. The layout of a lens system to be optimized includes the number of lenses, shape of lens surfaces, distances between lenses, and lens materials. A phase field function is employed to implicitly parameterize the boundaries of the lenses, which move according to design sensitivities during optimization. Multiple lenses with different materials are optimized using a single phase field function. Because the ratio of the acoustic wavelength with respect to lens dimensions is large, diffraction effects should be taken into account. Accordingly, the performance of a lens system should be analyzed using wave acoustics and not the ray tracing method. The optimization problem is formulated to remove the aberrations of coma and field curvature. The validity of the proposed optimization method is demonstrated by solving benchmark design problems including a lens system with a large field of view.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. A lens system refers to an assembly of lens units. In literatures for the optical lens design, the name “element” is often used to denote a single lens. Thus a lens system consists of one or more lenses or elements. In this investigation, mirrors and prisms are not taken into account for the design of a lens system.

References

  • Andkjær JA, Sigmund O, Breinbjerg O (2012) Wave manipulation by topology optimization. Ph.D. thesis, DTU Mechanical Engineering

  • Belcher EO, Dinh HQ, Lynn DC, Laughlin TJ (1999) Beamforming and imaging with acoustic lenses in small, high-frequency sonars. Proceedings of Oceans '99 MTS/IEEE, vol 3. Seattle, WA, 1495–1499 September 13–16, 1999

  • Belcher EO, Hanot W, Burch J (2002) Dual-frequency identification sonar (DIDSON). Proceedings of the 2002 International Symposium on Underwater Technology, 187–192

  • Blank L, Farshbaf-Shaker MH, Garcke H, Rupprecht C, Styles V (2014) Multi-material phase field approach to structural topology optimization. Int Ser Numer Math 165:231–246

    Article  MathSciNet  MATH  Google Scholar 

  • Borrvall T (2001) Topology optimization of elastic continua using restriction. Arch Comput Meth Eng 8:351–385

    Article  MathSciNet  MATH  Google Scholar 

  • Comsol (2013) Comsol Acoustics Module User’s Guide, Version 4.3b

  • Dühring MB, Jensen JS, Sigmund O (2008) Acoustic design by topology optimization. J Sound Vib 317:557–575

    Article  Google Scholar 

  • Enquist B, Majda A (1979) Radiation boundary conditions for acoustic and elastic wave calculations. Communications in Pure Applied Mathematics 32:313–357

    Article  MathSciNet  MATH  Google Scholar 

  • Fischer RE, Tadic-Galeb B, Yoder PR (2008) Optical system design, 2nd edn. McGraw-Hill Education, New York

    Google Scholar 

  • Fletcher R (1981) Nonlinear programming. In: Practical methods of optimization, vol 2. Wiley, Chichester, pp 120–156

    Google Scholar 

  • Gain AL, Paulino GH (2012) Phase-field topology optimization with polygonal elements: a finite volume approach for the evolution equation. Struct Multidiscip Optim 46(3):327–342

    Article  MathSciNet  MATH  Google Scholar 

  • Geary JM (2002) Introduction to lens design with practical Zemax examples. Willmann-Bell, Inc., Richmond

    Google Scholar 

  • Haber RB, Bendsøe MP, Jog CS (1996) A new approach to variable topology shape design using constraint on the perimeter. Structural Optimization 11:1–12

    Article  Google Scholar 

  • Hecht E (2003) Optics. Addison-Wesley Publishing Company, 4th edn.

  • Isakari H, Kuriyama K, Harada S, Yamada T, Takahashi T, Matsumoto T (2014) A topology optimisation for three-dimensional acoustics with the level set method and the fast multipole boundary element. Mechanical Engineering Journal 1(4):14–00121

    Article  Google Scholar 

  • Jensen JS, Sigmund O (2005) Systematic design of acoustic devices by topology optimization. In Twelfth international congress on sound and vibration, ICVS12 2005, Lisbon

  • Kamgar-Parsi B, Johnson B, Folds DL, Belcher EO (1997) High-resolution underwater acoustic imaging with lens-based systems. Int J Imaging Syst Technol 8:377–385

    Article  Google Scholar 

  • Matsuki T, Yamada T, Izui K, Nishiwaki S (2014) Topology optimization for locally resonant sonic materials. Appl Phys Lett 104:191905

    Article  Google Scholar 

  • Mori K, Ogasawara H, Nakamura T, Tsuchiya T, Endoh N (2011) Design and convergence performance analysis of aspherical acoustic lens applied to ambient noise imaging in actual ocean experiment. Jpn J Appl Phys 50:07HG09

    Article  Google Scholar 

  • Nakamura T, Hashimoto M, Mori K, Kamakura T, Anada T (2005) Sound fields focused by a biconcave acoustic lens for normal and oblique incidence. Proceedings of Oceans 2005– Europe 1. Brest, France, 62–67 June 20–23

  • Noguchi Y, Yamada T, Otomori M, Izui K, Nishiwaki S (2015) An acoustic metasurface design for wave motion conversion of longitudinal waves to transverse waves using topology optimization. Appl Phys Lett 107:221909

    Article  Google Scholar 

  • Sato Y, Miyazaki A, Miyazaki Y, Mori Y, Nakamura T (2007) Design of an absolutely aplanatic acoustic lens. Jpn J Appl Phys 46(7B):4982–4989

    Article  Google Scholar 

  • Takase Y, Anada T, Tsuchiya T, Endoh N, Nakamura N, Tukioka T (2005) Real-time sonar system using acoustic lens and numerical analysis based on 2D/3D parabolic equation method. Proceedings of Oceans 2005– Europe 1. Brest, France, 23–28 June 20–23

  • Takezawa A, Nishiwaki S, Kitamura M (2010) Shape and topology optimization based on the phase field method and sensitivity analysis. J Comput Phys 229(7):2697–2718

    Article  MathSciNet  MATH  Google Scholar 

  • The Mathworks (2015) Matlab–User’s Guide. The Mathworks Inc., USA

    Google Scholar 

  • Tran QD, Jang GW, Kwon HS, Cho WH, Cho SH, Cho YH, Seo HS (2016) Shape optimization of acoustic lenses for underwater imaging. J Mech Sci Technol 30:4633–4644

    Article  Google Scholar 

  • Tsukioka S, Aoki T, Ochi H, Shimura T, Sawa T, Nakamura T, Anada T, Kaihou I, Noda H (2002) Development of an acoustic lens for an imaging sonar for autonomous underwater vehicle “Urashima” and experimentation in a water tank. Jpn J Appl Phys 41:3970–3973

    Article  Google Scholar 

  • Wallin M, Ristinmaa M, Askfelt H (2012) Optimal topologies derived from a phase-field method. Struct Multidiscip Optim 45(2):171–183

    Article  MathSciNet  MATH  Google Scholar 

  • Zemax (2011) Optical Design Program User’s Manual, Radiant Zemax LLC

  • Zhang WS, Zhong WL, Guo X (2015) Explicit layout control in optimal design of structural systems with multiple embedding components. Comput Methods Appl Mech Eng 290:290–313

    Article  MathSciNet  Google Scholar 

  • Zhou S, Wang MY (2007) Multimaterial structural topology optimization with a generalized Cahn–Hilliard model of multiphase transition. Struct Multidiscip Optim 33(2):89–111

Download references

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (NRF-2014R1A2A1A10051263 and NRF-2014M3C1A9060865).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang-Won Jang.

Electronic supplementary material

ESM 1

(DOCX 20 kb)

Appendices

Appendix 1: Finite element formulation

The weak formulation for the governing equation in Equation (8) is

$$ \underset{D}{\int}\left[\nabla q\cdot \frac{1}{\rho}\nabla p-\frac{\omega^2}{\kappa} qp\right] d\Omega =0, $$
(29)

where q is a test function. Using integration by parts and applying boundary conditions in Equation (9) and (10), Equation (29) can be rewritten as

$$ \begin{array}{c}\hfill \frac{1}{\rho}\underset{D}{\int}\nabla q\cdot \nabla pd\Omega -\frac{\omega^2}{\kappa}\underset{D}{\int } q pd\Omega =\frac{1}{\rho}\underset{\Gamma_1}{\int } q\left(2{ikp}_{\mathrm{in}}- ikp\right) d\Gamma, \hfill \\ {}\hfill +\frac{1}{\rho}\underset{\Gamma_2}{\int } q\left(- ikp\right) d\Gamma +\frac{1}{\rho}\underset{\Gamma_3}{\int } q\left(- ikp\right) d\Gamma +\frac{1}{\rho}\underset{\Gamma_4}{\int } q\left(- ikp\right) d\Gamma .\hfill \end{array}\kern5.5em $$
(30)

For the finite element discretization, the field variables are approximated as

$$ \begin{array}{ccc}\hfill p={\mathbf{N}}^T\mathbf{p}\hfill & \hfill \mathrm{and}\hfill & \hfill q={\mathbf{N}}^T\mathbf{q},\hfill \end{array} $$
(31)

where N T is the shape function matrix, and p and q are nodal vectors associated with p and q, respectively. Substituting Equation (31) in Equation (30) gives the matrix form of the equation,

$$ \mathbf{SP}=\mathbf{F}, $$
(32)

where

$$ \mathbf{S}=\mathbf{K}-\mathbf{M}+\mathbf{B}, $$
(33)
$$ \mathbf{K}=\underset{D}{\int}\nabla {\mathbf{N}}^T\nabla \mathbf{N} d\Omega, $$
(34)
$$ \mathbf{M}=\frac{\omega^2}{\kappa}\underset{D}{\int }{\mathbf{N}}^T\mathbf{N} d\Omega, $$
(35)
$$ \mathbf{B}=\frac{ik}{\rho}\left(\underset{\Gamma_1}{\int }{\mathbf{N}}^T\mathbf{N} d\Gamma +\underset{\Gamma_2}{\int }{\mathbf{N}}^T\mathbf{N} d\Gamma +\underset{\Gamma_3}{\int }{\mathbf{N}}^T\mathbf{N} d\Gamma +\underset{\Gamma_4}{\int }{\mathbf{N}}^T\mathbf{N} d\Gamma \right), $$
(36)
$$ \mathbf{F}=\frac{2{ikp}_{\mathrm{in}}}{\rho}\underset{\Gamma_1}{\int }{\mathbf{N}}^T d\Gamma . $$
(37)

Appendix 2: Adjoint variable method for sensitivity analysis

Using Equation (32) and the conjugate equation of Equation (32), the objective in Equation (19) can be written as

$$ \begin{array}{l}\overline{\Psi}= f\left(\phi \right)+{\boldsymbol{\uplambda}}_1^T\left({\mathbf{S}\mathbf{p}}_R+ i{\mathbf{S}\mathbf{p}}_I-\mathbf{F}\right)+{\boldsymbol{\uplambda}}_2^T\left(\overline{\mathbf{S}}{\mathbf{p}}_R- i\overline{\mathbf{S}}{\mathbf{p}}_I-\overline{\mathbf{F}}\right)\\ {}\kern1em +\sum_{j=1}^M\left\{-{\ell}_j{C}_j\left(\phi \right)+\frac{1}{2}{\sigma}_j{C}_j^2\left(\phi \right)\right\}+{P}_{\mathrm{dist}},\end{array} $$
(38)

where \( \overline{\mathbf{S}} \) and \( \overline{\mathbf{F}} \) are conjugates of S and F, respectively, and λ 1 and λ 2 are adjoint variable vectors. The sensitivity of Equation (38) is

$$ \begin{array}{l}\frac{d\overline{\Psi}}{d{\phi}_i}=\frac{\partial f}{\partial {\phi}_i}+{\left(\frac{\partial f}{\partial {\mathbf{p}}_R}\right)}^T\frac{\partial {\mathbf{p}}_R}{\partial {\phi}_i}+{\left(\frac{\partial f}{\partial {\mathbf{p}}_I}\right)}^T\frac{\partial {\mathbf{p}}_I}{\partial {\phi}_i}+{\boldsymbol{\uplambda}}_1^T\left[\left(\frac{\partial \mathbf{S}}{\partial {\phi}_i}{\mathbf{p}}_R+\mathbf{S}\frac{\partial {\mathbf{p}}_R}{\partial {\phi}_i}\right)+ i\left(\frac{\partial \mathbf{S}}{\partial {\phi}_i}{\mathbf{p}}_I+\mathbf{S}\frac{\partial {\mathbf{p}}_I}{\partial {\phi}_i}\right)-\frac{\partial \mathbf{F}}{\partial {\phi}_i}\right]\\ {}\kern1em +{\boldsymbol{\uplambda}}_2^T\left[\left(\frac{\partial \overline{\mathbf{S}}}{\partial {\phi}_i}{\mathbf{p}}_R+\overline{\mathbf{S}}\frac{\partial {\mathbf{p}}_R}{\partial {\phi}_i}\right)+ i\left(\frac{\partial \overline{\mathbf{S}}}{\partial {\phi}_i}{\mathbf{p}}_I-\overline{\mathbf{S}}\frac{\partial {\mathbf{p}}_I}{\partial {\phi}_i}\right)-\frac{\partial \overline{\mathbf{F}}}{\partial {\phi}_i}\right]\\ {}\kern1em +\sum_{j=1}^M\left\{-{\ell}_j+{\sigma}_j{C}_j\left(\phi \right)\right\}\frac{{ d C}_j\left(\phi \right)}{d{\phi}_i}+\frac{{ d P}_{\mathrm{dist}}}{d{\phi}_i},\end{array} $$
(39)

where \( \frac{\partial {\boldsymbol{\uplambda}}_1^T}{\partial {\phi}_i}\left({\mathbf{Sp}}_R+ i{\mathbf{Sp}}_I-\mathbf{F}\right)=0 \) and \( \frac{\partial {\boldsymbol{\uplambda}}_2^T}{\partial {\phi}_i}\left(\overline{\mathbf{S}}{\mathbf{p}}_R- i\overline{\mathbf{S}}{\mathbf{p}}_I-\overline{\mathbf{F}}\right)=0 \) are used. Reorganizing Equation (39) gives

$$ \begin{array}{l}\frac{d\overline{\Psi}}{d{\phi}_i}=\frac{\partial f}{\partial {\phi}_i}+{\left(\frac{\partial {\mathbf{p}}_R}{\partial {\phi}_i}\right)}^T\left(\frac{\partial f}{\partial {\mathbf{p}}_R}+{\mathbf{S}}^T{\boldsymbol{\uplambda}}_1+{\overline{\mathbf{S}}}^T{\boldsymbol{\uplambda}}_2\right)+{\left(\frac{\partial {\mathbf{p}}_I}{\partial {\phi}_i}\right)}^T\left(\frac{\partial f}{\partial {\mathbf{p}}_I}+ i{\mathbf{S}}^T{\boldsymbol{\uplambda}}_1- i{\overline{\mathbf{S}}}^T{\boldsymbol{\uplambda}}_2\right)\\ {}\kern1em +{\boldsymbol{\uplambda}}_1^T\left(\frac{\partial \mathbf{S}}{\partial {\phi}_i}\mathbf{p}-\frac{\partial \mathbf{F}}{\partial {\phi}_i}\right)+{\boldsymbol{\uplambda}}_2^T\left(\frac{\partial \overline{\mathbf{S}}}{\partial {\phi}_i}\overline{\mathbf{p}}-\frac{\partial \overline{\mathbf{F}}}{\partial {\phi}_i}\right)\\ {}\kern1em +\sum_{j=1}^M\left\{-{\ell}_j+{\sigma}_j{C}_j\left(\phi \right)\right\}\frac{{ d C}_j\left(\phi \right)}{d{\phi}_i}+\frac{{ d P}_{\mathrm{dist}}}{d{\phi}_i}.\end{array} $$
(40)

Because λ 1 and λ 2 can be set arbitrarily, we set \( {\boldsymbol{\uplambda}}_1={\overline{\boldsymbol{\uplambda}}}_2=\boldsymbol{\uplambda} \) and choose λ to satisfy

$$ {\mathbf{S}}^T\boldsymbol{\uplambda} +{\overline{\mathbf{S}}}^T\overline{\boldsymbol{\uplambda}}=-\frac{\partial f}{\partial {\mathbf{p}}_R}, $$
(41)
$$ i{\mathbf{S}}^T\boldsymbol{\uplambda} - i{\overline{\mathbf{S}}}^T\overline{\boldsymbol{\uplambda}}=-\frac{\partial f}{\partial {\mathbf{p}}_I}. $$
(42)

Multiplying i to Equation (42) and subtracting it from Equation (41) results in

$$ {\mathbf{S}}^T\boldsymbol{\uplambda} =-\frac{1}{2}\left(\frac{\partial f}{\partial {\mathbf{p}}_R}- i\frac{\partial f}{\partial {\mathbf{p}}_I}\right). $$
(43)

Using λ by Equation (43), Equation (13) can be rewritten as

$$ \frac{d\overline{\Psi}}{d{\phi}_i}=\frac{\partial f}{\partial {\phi}_i}+2\mathrm{Re}\left({\boldsymbol{\uplambda}}^T\frac{\partial \mathbf{S}}{\partial {\phi}_i}\mathbf{p}-\frac{\partial \mathbf{F}}{\partial {\phi}_i}\right)+\sum_{j=1}^M\left\{-{\ell}_j+{\sigma}_j{C}_j\left(\phi \right)\right\}\frac{{ d C}_j\left(\phi \right)}{d{\phi}_i}+\frac{{ d P}_{\mathrm{dist}}}{d{\phi}_i}. $$
(44)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tran, Q.D., Jang, GW., Kwon, HS. et al. Shape and topology optimization of acoustic lens system using phase field method. Struct Multidisc Optim 56, 713–729 (2017). https://doi.org/10.1007/s00158-017-1682-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-017-1682-8

Keywords

Navigation