Skip to main content

Advertisement

Log in

Topology optimization of reflector antennas based on integrated thermal-structural-electromagnetic analysis

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

In the area of structural design of reflector antennas, the existing researches mainly focus on size/shape optimization or just optimizing for structural performances (e.g., the reflector surface accuracy). Reflector antennas are one kind of equipment which is finally judged by its electromagnetic performances, and topology optimization has been proven a powerful method for structural design. In this paper, an integrated thermal-structural-electromagnetic (TSE) analysis procedure based on topology variables for reflector antennas is established for the first time. Then, topology optimization of the backup structure (BUS) of reflector antennas is developed and solved by genetic algorithms (GA) with bit-matrix representation of chromosome. The proposed optimization design method takes both the electromagnetic performance (antenna gain) and structure performance (total weight) into consideration. Numerical examples of BUS topology optimization of maximum gain with weight constraint are carried out. For comparison, a traditional minimum compliance design is also performed. The results illustrate the validity and effectiveness of the proposed method in the topology optimization of reflector antennas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Balanis CA (2008) Modern antenna handbook. Wiley, Hoboken

    Book  Google Scholar 

  • Bendsoe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224

    Article  MathSciNet  MATH  Google Scholar 

  • Bourdin B, Chambolle A (2003) Design-dependent loads in topology optimization. ESAIM-Contrl Optim Calculus Variat 9(2):19–48

    Article  MathSciNet  MATH  Google Scholar 

  • Choi JS, Yoo J (2009) Structural topology optimization of magnetic actuators using genetic algorithms and ON/OFF sensitivity. IEEE Trans Magn 45(5):2276–2279

    Article  Google Scholar 

  • Deaton JD, Grandhi RV (2014) A survey of structural and multidisciplinary continuum topology optimization: Post 2000. Struct Multidiscip Optim 49(1):1–38

    Article  MathSciNet  Google Scholar 

  • Duan BY (1998) The analysis, optimization and measurement of antenna structures. Xidian University Press, Xi’an

    Google Scholar 

  • Duan BY, Qi YH, Xu GH, Wang WT (1994) Study on optimization of mechanical and electronic synthesis for the antenna structural system. Mechatronics 4(6):553–564

    Article  Google Scholar 

  • Fanjoy DW, Crossley WA (2002) Topology design of planar cross-sections with a genetic algorithm: part 1––overcoming the obstacles. Eng Optim 34(1):1–22

    Article  Google Scholar 

  • Gao T, Zhang WH (2010) Topology optimization involving thermo-elastic stress loads. Struct Multidiscip Optim 42(5):725–738

    Article  MathSciNet  MATH  Google Scholar 

  • Hamda H, Jouve F, Lutton E, Schoenauer M, Sebag M (2002) Compact unstructured representations for evolutionary design. Appl Intell 16(2):139–155

    Article  MATH  Google Scholar 

  • Im C, Jung H, Kim Y (2003) Hybrid genetic algorithm for electromagnetic topology optimization. IEEE Trans Magn 39(5):2163–2169

    Article  Google Scholar 

  • Jakiela MJ, Chapman C, Duda J, Adewuya A, Saitou K (2000) Continuum structural topology design with genetic algorithms. Comput Methods Appl Mech Eng 186(2–4):339–356

    Article  MathSciNet  MATH  Google Scholar 

  • Levy R (1996) Structural engineering of microwave antennas for electrical, mechanical, and civil engineers. IEEE Press, New York

    Google Scholar 

  • Li Q, Steven GP, Xie YM (1999) Displacement minimization of thermoelastic structures by evolutionary thickness design. Comput Methods Appl Mech Eng 179(3–4):361–378

    Article  MATH  Google Scholar 

  • Liu JS, Hollaway L (1998) Integrated structure-electromagnetic optimization of large reflector antenna systems. Struct Optim 16:29–36

    Article  Google Scholar 

  • Liu WD, Zhu H, Wang YP, Zhou SQ, Bai YL, Zhao CS (2013) Topology optimization of support structure of telescope skin based on bit-matrix representation NSGA-II. Chin J Aeronaut 26(6):1422–1429

    Article  Google Scholar 

  • Liu X, Wang C, Zhou Y (2014) Topology optimization of thermoelastic structures using the guide-weight method. Sci China Technol Sci 57(5):968–979

    Article  Google Scholar 

  • Madeira JA, Rodrigues HC, Pina H (2006) Multiobjective topology optimization of structures using genetic algorithms with chromosome repairing. Struct Multidiscip Optim 32(1):31–39

    Article  Google Scholar 

  • Matsumori T, Kondoh T, Kawamoto A, Nomura T (2013) Topology optimization for fluid – thermal interaction problems under constant input power. Struct Multidiscip Optim 47:571–581

    Article  MATH  Google Scholar 

  • Padula SL, Adelman HM, Bailey MC, Haftka RT (1989) Integrated structural electromagnetic shape control of large space antenna reflectors. AIAA J 27(6):817–819

    Article  Google Scholar 

  • Querin OM, Young V, Steven GP, Xie YM (2000) Computational efficiency and validation of bi-directional evolutionary structural optimisation. Comput Methods Appl Mech Eng 189(2):559–573

    Article  MATH  Google Scholar 

  • Rahmat-Samii Y (1984) A comparison between GO/aperture-field and physical-optics methods of offset reflectors. IEEE Trans Antennas Propag 32(3):301–306

    Article  Google Scholar 

  • Rodrigues H, Fernandes P (1995) A material based model for topology optimization of thermoelastic structures. Int J Numer Methods Eng 38(12):1951–1965

    Article  MathSciNet  MATH  Google Scholar 

  • Sigmund O (2001) A 99 line topology optimization code written in Matlab. Struct Multidiscip Optim 21:120–127

    Article  Google Scholar 

  • Sigmund O (2007) Morphology-based black and white filters for topology optimization. Struct Multidiscip Optim 33(4-5):401–424

    Article  Google Scholar 

  • Sigmund O, Kurt M (2013) Topology optimization approaches: a comparative review. Struct Multidiscip Optim 48(6):1031–1055

    Article  MathSciNet  Google Scholar 

  • Tai K, Akhtar S (2005) Structural topology optimization using a genetic algorithm with a morphological geometric representation scheme. Struct Multidiscip Optim 30(2):113–127

    Article  Google Scholar 

  • Tseng K, Zhang C, Wu C (2010) An enhanced binary particle swarm optimization for structural topology optimization. Proc Inst Mech Eng C J Mech Eng Sci 224(10):2271–2287

    Article  Google Scholar 

  • Wang SY, Tai K (2004) Graph representation for structural topology optimization using genetic algorithms. Comput Struct 82(20-21):1609–1622

    Article  MathSciNet  Google Scholar 

  • Wang SY, Tai K (2005) Structural topology design optimization using genetic algorithms with a bit-array representation. Comput Methods Appl Mech Eng 194(36-38):3749–3770

    Article  MATH  Google Scholar 

  • Wang M, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192(1-2):227–246

    Article  MathSciNet  MATH  Google Scholar 

  • Wang SY, Tai K, Wang MY (2006) An enhanced genetic algorithm for structural topology optimization. Int J Numer Methods Eng 65(1):18–44

    Article  MathSciNet  MATH  Google Scholar 

  • Wang CS, Duan BY, Qiu YY (2007) On distorted surface analysis and multidisciplinary structural optimization of large reflector antennas. Struct Multidiscip Optim 33(6):519–528

    Article  Google Scholar 

  • Xia Q, Wang M (2008) Topology optimization of thermoelastic structures using level set method. Comput Mech 42(6):837–857

    Article  MATH  Google Scholar 

  • Yaji K, Yamada T, Yoshino M, Matsumoto T, Izui K, Nishiwaki S (2014) Topology optimization using the lattice Boltzmann method incorporating level set boundary expressions. J Comput Phys 274:158–181

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang SX, Duan BY, Bao H, Lian PY (2013) Sensitivity analysis of reflector antennas and its application on shaped Geo-Truss unfurlable antennas. IEEE Trans Antennas Propag 61(11):5402–5407

    Article  Google Scholar 

  • Zhang SX, Du JL, Duan BY, Yang GG, Ma YJ (2015) Integrated Structural-Electromagnetic shape control of cable mesh reflector antennas. AIAA J 53(5):1395–1398

    Article  Google Scholar 

Download references

Acknowledgments

The work was supported by National Natural Science Foundation of China [Grant No. 51490660, 51490661, 11403089] and the Xinjiang Uygur Autonomous Region Key Laboratory special fund [Grant N0. 2014KL012]. The help of Dr. Shuxin Zhang and Mr. Peiyuan Lian is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Bao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, N., Bao, H., Duan, B. et al. Topology optimization of reflector antennas based on integrated thermal-structural-electromagnetic analysis. Struct Multidisc Optim 55, 715–722 (2017). https://doi.org/10.1007/s00158-016-1581-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-016-1581-4

Keywords

Navigation