Skip to main content
Log in

Numerical investigation of non-hierarchical coordination for distributed multidisciplinary design optimization with fixed computational budget

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

This paper presents a numerical investigation of the non-hierarchical formulation of Analytical Target Cascading (ATC) for coordinating distributed multidisciplinary design optimization (MDO) problems. Since the computational cost of the analyses can be high and/or asymmetric, it is beneficial to understand the impact of the number of ATC iterations required for coordination and the number of iterations required for disciplinary feasibility on the quality of the obtained MDO solution. At each “outer” ATC iteration, the disciplinary optimization subproblems are solved for a predefined maximum number of “inner” loop iterations. The numerical experiments consider different numbers of maximum outer iterations while keeping the total computational budget of analyses constant. Solution quality is quantified by optimality (objective function value) and consistency (violation of coordination-related consistency constraints). Since MDO problems are typically simulation-based (and often blackbox) problems, we compare implementations of the mesh-adaptive direct search optimization algorithm (a derivative-free method with convergence properties) to the gradient-based interior-point algorithm implementation of the popular Matlab optimization toolbox. The impact of the values of two parameters involved in the alternating directions updating scheme of the augmented Lagrangian penalty functions (aka method of multipliers) on solution quality is also investigated. Numerical results are provided for a variety of MDO test problems. The results indicate consistently that a balanced modest number of outer and inner iterations is more effective; moreover, there seems to be a specific combination of parameter value ranges that yield better results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aasi J, Abadie J, Abbott BP, Abbott R, Abbott TD, Abernathy M, Accadia T, Acernese F, Adams C, Adams T et al (2013) Einstein@ Home all-sky search for periodic gravitational waves in LIGO S5 data. Phys Rev D 87(4):042001. doi:10.1103/PhysRevD.87.042001

  • Allison JT, Kokkolaras M, Zawislak MR, Papalambros PY (2005) On the use of analytical target cascading and collaborative optimization for complex system design. In: Proceedings of the 6th world congress on structural and multidisciplinary optimization. Rio de Janeiro

  • Audet C, Dennis J Jr (2006) Mesh adaptive direct search algorithms for constrained optimization. SIAM J Optim 17(1):188–217. doi:10.1137/040603371

  • Audet C, Ianni A, Le Digabel S, Tribes C (2014) Reducing the Number of Function Evaluations in Mesh Adaptive Direct Search Algorithms. SIAM Journal on Optimization 24(2):621–642. doi:10.1137/120895056

  • Bertsekas DP (2003) Nonlinear programming, 2nd edn. Athena Scientific, Belmont. 2nd printing

  • Clarke F (1983) Optimization and nonsmooth analysis. Wiley, New York. Reissued in 1990 by SIAM Publications, Philadelphia, as Vol. 5 in the series Classics in Applied Mathematics. http://www.ec-securehost.com/SIAM/CL05.html

  • Gheribi A, Harvey JP, Bélisle E, Robelin C, Chartrand P, Pelton A, Bale C, Le Digabel S (2016) Use of a biobjective direct search algorithm in the process design of material science. To appear in Optimization and Engineering. doi:10.1007/s11081-015-9301-2

  • Kang CA, Brandt AR, Durlofsky LJ (2014a) Optimizing heat integration in a flexible coal–natural gas power station with {CO2} capture. Int J Greenhouse Gas Control 31:138–152. doi:10.1016/j.ijggc.2014.09.019

  • Kang N, Kokkolaras M, Papalambros PY, Yoo S, Na W, Park J, Featherman D (2014b) Optimal design of commercial vehicle systems using analytical target cascading. Struct Multidiscip Optim 50(6):1103–1114

  • Kim HM (2001) Target cascading in optimal system design. Ph.D. thesis, University of Michigan

  • Kim HM, Kokkolaras M, Louca LS, Delagrammatikas GJ, Michelena NF, Filipi Z, Papalambros P, Stein J, Assanis D (2002) Target cascading in automotive vehicle redesign: a class 6 truck study. Int J Veh Des 29(3):199–225

    Article  Google Scholar 

  • Kim HM, Michelena NF, Papalambros PY, Jiang T (2003) Target cascading in optimal system design. ASME J Mech Des 125(3):474–480

    Article  Google Scholar 

  • Kim HM, Chen W, Wiecek MM (2006) Lagrangian coordination for enhancing the convergence of analytical target cascading. AIAA J 44(10):2197–2207

    Article  Google Scholar 

  • Kokkolaras M, Fellini R, Kim HM, Michelena NF, Papalambros PY (2002) Extension of the target cascading formulation to the design of product families. Struct Multidiscip Optim 24(4):293–301

    Article  Google Scholar 

  • Kokkolaras M, Louca LS, Delagrammatikas GJ, Michelena NF, Filipi ZS, Papalambros PY, Stein JL (2004) Simulation-based optimal design of heavy trucks by model-based decomposition: an extensive analytical target cascading case study. Int J Heavy Veh Syst 11(3-4):402–432

    Google Scholar 

  • Kulfan BM (2007) A universal parametric geometry representation method “CST”. In: The 45th AIAA aerospace sciences meeting and exhibit, AIAA–2007–0062. Reno

  • Le Digabel S (2011) Algorithm 909: NOMAD: nonlinear optimization with the MADS algorithm. ACM Trans Math Softw 37(4):44:1–44:15. doi:10.1145/1916461.1916468

    Article  MathSciNet  Google Scholar 

  • Martins JRRA, Lambe AB (2013) Multidisciplinary design optimization: a survey of architectures. AIAA J 51:2049–2075. doi:10.2514/1.J051895

    Article  Google Scholar 

  • Michelena N, Kim HM, Papalambros PY (1999) A system partitioning and optimization approach to target cascading. In: Proceedings of the 12th international conference on engineering design. Munich

  • Michelena NF, Park H, Papalambros PY (2003) Convergence properties of analytical target cascading. AIAA J 41(5):897–905

    Article  Google Scholar 

  • Pourbagian M, Talgorn B, Habashi W, Kokkolaras M, Le Digabel S (2015) Constrained problem formulations for power optimization of aircraft electro-thermal anti-icing systems. Optim Eng 16(4):663–693. doi:10.1007/s11081-015-9282-1

    Article  MathSciNet  Google Scholar 

  • Spencer TL, Goward GR, Bain AD (2013) Complete description of the interactions of a quadrupolar nucleus with a radiofrequency field. implications for data fitting. Solid State Nucl Magn Reson 53:20–26. doi:10.1016/j.ssnmr.2013.03.002

    Article  Google Scholar 

  • Talgorn B, Le Digabel S, Kokkolaras M (2015) Statistical surrogate formulations for simulation-based design optimization. ASME J Mech Des 137(2):021,405–1–021,405–18. doi:10.1115/1.4028756

    Article  Google Scholar 

  • Tosserams S, Etman LFP, Papalambros PY, Rooda JE (2006) An augmented Lagrangian relaxation for analytical target cascading using the alternating direction method of multipliers. Struct Multidiscip Optim 31 (3):176–189

    Article  MathSciNet  MATH  Google Scholar 

  • Tosserams S, Etman LFP, Rooda JE (2008) Augmented Lagrangian coordination for distributed optimal design in MDO. Int J Numer Methods Eng 73(13):1885–1910

    Article  MathSciNet  MATH  Google Scholar 

  • Tosserams S, Kokkolaras M, Etman L, Rooda J (2010) A nonhierarchical formulation of analytical target cascading. ASME J Mech Des 132(5):051002/1–13

Download references

Acknowledgments

This work was supported by NSERC EGP grant 464020-14; such support does not constitute an endorsement by the sponsors of the opinions expressed in this article. The first two authors would also like to express their gratitude to Bombardier Aerospace for the learning experience on its multilevel MDO framework and aircraft design.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kokkolaras.

Appendices

Appendix A: Test problem formulations

In Figs. 101112 and 13, an arrow from subproblem i to subproblem j indicates that the output of subproblem i is an input to subproblem j. Double-headed arrows denote variables shared by two subproblems.

Fig. 10
figure 10

Bi-quadratic problem analysis flow

Fig. 11
figure 11

Geometric programming problem analysis flow

Fig. 12
figure 12

Simplified wing design problem analysis flow

Fig. 13
figure 13

Supersonic Business Jet problem analysis flow

1.1 A.1 Bi-quadratic problem

Original problem:

$$ \begin{array}{ll} \min & (x-1)^{2} + (x+1)^{2} \\ \text{wrt} & x \\ \text{st} & x \in [-100~;+100] \\ \end{array} $$
(9)

Subproblem 1:

$$ \begin{array}{ll} \min & t_{y_{21}} + t_{y_{31}} +\\ & \hspace{0cm} \phi_{y_{21}}(t_{y_{21}}-r_{y_{21}}) + \phi_{y_{31}}(t_{y_{31}}-r_{y_{31}}) \\ \text{wrt} & t_{y_{21}},t_{y_{31}} \\ \end{array} $$
(10)

Subproblem 2:

$$ \begin{array}{ll} \min & \phi_{y_{21}}(t_{y_{21}}-r_{y_{21}}) + \phi_{s_{23}}(x_{s_{232}}-x_{s_{233}}) \\ \text{wrt} & x_{s_{232}} \\ \text{where} & r_{y_{21}} = (x_{s_{232}}-1)^{2} \\ \text{st} & x_{s_{232}} \in [-100~;+100] \\ \end{array} $$
(11)

Subproblem 3:

$$\begin{array}{@{}rcl@{}} \min &&\phi_{y_{31}}(t_{y_{31}}-r_{y_{31}}) + \phi_{s_{23}}(x_{s_{232}}-x_{s_{233}}) \\ \text{wrt} &&x_{s_{233}}\\ \text{where} &&r_{y_{31}} = (x_{s_{233}}+1)^{2} \\ &&\text{st} x_{s_{233}} \in [-100~;+100] \\ \end{array} $$
(12)

1.2 A.2 Geometric programming problem

Original problem:

$$\begin{array}{@{}rcl@{}} \min && {z_{1}^{2}} + {z_{2}^{2}}\\ \text{wrt} &&z_{1}, z_{2}, z_{3}, z_{4}, z_{5}, z_{6}, z_{7}, z_{8}, z_{9}, z_{10}, z_{11}, z_{12}, z_{13}, z_{14} \\ &&\text{st} z_{i} \in [10^{-6}~;10^{6}] ~~\forall i \\ && {z_{1}^{2}} = {z_{3}^{2}}+z_{4}^{-2}+{z_{5}^{2}} \\ && {z_{2}^{2}} = {z_{5}^{2}}+{z_{6}^{2}} +{z_{7}^{2}} \\ && {z_{3}^{2}} = {z_{8}^{2}}+z_{9}^{-2}+z_{10}^{-2}+z_{11}^{2} \\ && {z_{6}^{2}} = z_{11}^{2}+z_{12}^{2}+z_{13}^{2}+z_{14}^{2} \\ && z_{3}^{-2} + {z_{4}^{2}} - {z_{5}^{2}} \leq 0 \\ && {z_{5}^{2}} + z_{6}^{-2} - {z_{7}^{2}} \leq 0 \\ && {z_{8}^{2}} + {z_{9}^{2}} - z_{11,2}^{2} \leq 0 \\ && z_{8}^{-2} + z_{10}^{2} - z_{11}^{2} \leq 0 \\ && z_{11}^{2} + z_{12}^{-2} - z_{13}^{2} \leq 0 \\ && z_{11}^{2} + z_{12}^{2} - z_{14}^{2} \leq 0 \\ \end{array} $$
(13)

Subproblem 1:

$$\begin{array}{@{}rcl@{}} \min && t^{2}_{y_{21}} + t^{2}_{y_{31}} + z_{4}^{-2} + 2 {z_{5}^{2}} + {z_{7}^{2}} +\\ &&\phi_{y_{21}}(t_{y_{21}}-r_{y_{21}}) + \phi_{y_{31}}(t_{y_{31}}-r_{y_{31}}) \\ \text{wrt} && t_{y_{21}},t_{y_{31}}, z_{4}, z_{5}, z_{7} \in [10^{-6}~;10^{6}] \\ \text{st} && t_{y_{21}}^{-2} + {z_{4}^{2}} - {z_{5}^{2}} \leq 0 \\ && {z_{5}^{2}} + t_{y_{31}}^{-2} - {z_{7}^{2}} \leq 0 \\ \end{array} $$
(14)

Subproblem 2:

$$\begin{array}{@{}rcl@{}} \min &&\quad \phi_{y_{21}}(t_{y_{21}}-r_{y_{21}}) + \phi_{s_{23}}(x_{s_{232}}-x_{s_{233}}) \\ \text{wrt} &&\quad z_{8},z_{9},z_{10}, x_{s_{232}} \in [10^{-6}~;10^{6}] \\ \text{st}&& \quad {z_{8}^{2}} + {z_{9}^{2}} - x_{s_{232}}^{2} \leq 0 \\ &&\quad z_{8}^{-2} + z_{10}^{2} - x_{s_{232}}^{2} \leq 0 \\ \text{where} &&r_{y_{21}} = \sqrt{{z_{8}^{2}}+z_{9}^{-2}+z_{10}^{-2}+x_{s_{232}}^{2}} \end{array} $$
(15)

Subproblem 3:

$$ \begin{array}{ll} \min & \phi_{y_{31}}(t_{y_{31}}-r_{y_{31}}) + \phi_{s_{23}}(x_{s_{232}}-x_{s_{233}}) \\ \text{wrt} & z_{12},z_{13},z_{14},x_{s_{233}} \in [10^{-6}~;10^{6}] \\ \text{st} & x_{s_{233}}^{2} + z_{12}^{-2} - z_{13}^{2} \leq 0 \\ & x_{s_{233}}^{2} + z_{12}^{2} - z_{14}^{2} \leq 0 \\ \text{where} & r_{y_{31}} = \sqrt{x_{s_{233}}^{2}+z_{12}^{2}+z_{13}^{2}+z_{14}^{2}} \end{array} $$
(16)

1.3 A.3 Simplified wing design problem

Subproblem 1 - aircraft:

$$ \begin{array}{ll} \min & t_{y_{21}} + t_{y_{31}} +\\ & \hspace{0cm} \phi_{y_{21}}(t_{y_{21}}-r_{y_{21}}) + \phi_{y_{31}}(t_{y_{31}}-r_{y_{31}}) \\ \text{wrt} & t_{y_{21}} , t_{y_{31}} \in [0~;10^{5}] \\ \end{array} $$
(17)

Subproblem 2 - structures:

$$ \begin{array}{ll} \min & \phi_{y_{21}}(t_{y_{21}}-r_{y_{21}}) + \phi_{s_{23}}(x_{s_{232}}-x_{s_{233}})\\ \text{wrt} & \mathbf{x}_{2},\mathbf{x}_{s_{232}} \in [0~;10]^{2} \\ \text{where} & r_{y_{21}} = 4,000 \big(1+\|\mathbf{x}_{s_{232}}-1\|_{2}^{2}\big)\big(1+\|\mathbf{x}_{2}-1\|_{2}^{2}\big) \end{array} $$
(18)

Subproblem 3 - aerodynamics:

$$ \begin{array}{ll} \min & \phi_{y_{31}}(t_{y_{31}}-r_{y_{31}}) + \phi_{s_{23}}(x_{s_{232}}-x_{s_{233}})\\ \text{wrt} & \mathbf{x}_{3},\mathbf{x}_{s_{233}} \in [0~;10]^{2} \\ \text{where} & r_{y_{31}} = 20,000 \,+\, 380,952\text{\;Drag} \,+\, 9,523,809\text{\;Drag}^{2}\\ & \text{Drag} = 0.025+0.004 \log_{10}(\omega) \\ & \omega \!= \big(1\,+\,\|\mathbf{x}_{s_{233}}\,-\,2\|^{2}_{2}\big) \big(1\,+\,\frac{\|\mathbf{x}_{3}-2\|^{2}_{2}}{1,000}\big) \big(1\,+\,1,000 |EH|\big) \\ & \mathbf{u} = 10(\mathbf{x}_{s_{233}}+\mathbf{x}_{3}) \\ & EH = f_{EH}(\mathbf{u} ) \\ & f_{EH}(\mathbf{u} ) = -(u_{2}+47) \sin \left( \sqrt{ \left| u_{2}+\frac{u_{1}}2+47 \right| } \right) \\ & \hspace{2cm} - u_{1} \sin \left( \sqrt{ \left| u_{1}-u_{2}-47 \right| } \right) \end{array} $$
(19)

1.4 A.4 Supersonic business jet problem

Box constraints apply to each design variable of each problem. See Tosserams et al. (2010) for details.

Subproblem 1 - aircraft:

$$ \begin{array}{ll} \min & W_{T}+\phi_{y_{21}}(\mathbf{t}_{y_{21}}-\mathbf{r}_{y_{21}})+\phi_{y_{31}}(\mathbf{t}_{y_{31}}-\mathbf{r}_{y_{31}}) +\\ & \hspace{0cm} \phi_{y_{41}}(\mathbf{t}_{y_{41}}-\mathbf{r}_{y_{41}})\\ \text{wrt} & \textbf{t}_{y_{21}}, \textbf{t}_{y_{31}}, \textbf{t}_{y_{41}}\\ \text{st} & {g}_{\text{aircraft}}(\textbf{t}_{y_{21}}, \textbf{t}_{y_{31}}, \textbf{t}_{y_{41}}) \leq \mathbf{0}\\ \text{where} & W_{T} = f(\textbf{t}_{y_{21}}, \textbf{t}_{y_{31}}, \textbf{t}_{y_{41}}) \\ \end{array} $$
(20)

Subproblem 2 - propulsion:

$$ \begin{array}{ll} \min & \phi_{y_{21}}(\mathbf{t}_{y_{21}}-\mathbf{r}_{y_{21}})+\phi_{y_{23}}(t_{y_{23}}-r_{y_{23}})+\phi_{y_{32}}(t_{y_{32}}-r_{y_{32}})\\ \text{wrt} & t_{y_{32}}, x_{2}=T \\ \text{st} & \mathbf{g}_{\text{prop}}(t_{y_{32}}, x_{2}) \leq \mathbf{0}\\ \text{where} &\mathbf{r}_{y_{21}} = f_{21}(t_{y_{32}}, x_{2}) \\ & r_{y_{23}} = f_{23}(t_{y_{32}}, x_{2}) \end{array} $$
(21)

Subproblem 3 - aerodynamics:

$$ \begin{array}{ll} \min & \phi_{y_{31}}(\mathbf{t}_{y_{31}}-\mathbf{r}_{y_{31}}) + \phi_{y_{32}}(t_{y_{32}}-r_{y_{32}}) +\\ & \hspace{0cm} \phi_{y_{34}}(t_{y_{34}}-r_{y_{34}})+\phi_{y_{23}}(t_{y_{23}}-r_{y_{23}}) +\\ & \hspace{0cm} \phi_{y_{43}}(t_{y_{43}}-r_{y_{43}})+\phi_{s_{34}}(\mathbf{x}_{s_{343}}-\mathbf{x}_{s_{344}})\\ \text{wrt} & t_{y_{23}},t_{y_{43}}, \textbf{x}_{3} = \left[ {\Lambda}_{\text{ht}},L_{\text{w}},L_{\text{ht}} \right]^{T},\\ & \hspace{0cm} \textbf{x}_{s_{343}} = [t/c,AR_{\text{w}},{\Lambda}_{\text{w}},S_{\text{ref}} ,S_{\text{ht}},AR_{\text{ht}}]^{T} \\ \text{st} & \mathbf{g}_{\text{prop}}(t_{y_{23}},t_{y_{43}}, \textbf{x}_{3}, \textbf{x}_{s_{343}}) \leq \mathbf{0}\\ \text{where} &\mathbf{r}_{y_{31}} = f_{31}(t_{y_{23}},t_{y_{43}}, \textbf{x}_{3}, \textbf{x}_{s_{343}})\\ &r_{y_{32}} = f_{32}(t_{y_{23}},t_{y_{43}}, \textbf{x}_{3}, \textbf{x}_{s_{343}})\\ &r_{y_{34}} =f_{34}(t_{y_{23}},t_{y_{43}}, \textbf{x}_{3}, \textbf{x}_{s_{343}})\\ \end{array} $$
(22)

Subproblem 4 - structures:

$$ \begin{array}{ll} \min & \phi_{y_{41}}(\mathbf{t}_{y_{41}}-\mathbf{r}_{y_{41}})+\phi_{y_{43}}(t_{y_{43}}-r_{y_{43}}) +\\ & \hspace{0cm} \phi_{y_{34}}(t_{y_{34}}-r_{y_{34}})+\phi_{s_{34}}(\mathbf{x}_{s_{343}}-\mathbf{x}_{s_{344}})\\ \text{wrt} & t_{y_{34}}, \textbf{x}_{4} = [\mathbf{t},\mathbf{t}_{\text{s}},\lambda]^{T},\\ & \hspace{0cm} \textbf{x}_{s_{344}} = [t/c,AR_{\text{w}},{\Lambda}_{\text{w}},S_{\text{ref}} ,S_{\text{ht}},AR_{\text{ht}}]^{T} \\ \text{st} & \mathbf{g}_{\text{struc}}(t_{y_{34}}, \textbf{x}_{4}, \textbf{x}_{s_{344}} ) \leq \mathbf{0}\\ \text{where} &\mathbf{r}_{y_{41}} = f_{41}(t_{y_{34}}, \textbf{x}_{4}, \textbf{x}_{s_{344}})\\ &r_{y_{43}} = f_{43}(t_{y_{34}}, \textbf{x}_{4}, \textbf{x}_{s_{344}}) \\ \end{array} $$
(23)

Appendix B: Complete numerical results

Table 4 Inconsistency and discrepancy from best known solution for all test problems with β = 2.2 and γ = 0.4
Table 5 Inconsistency and discrepancy from best know solution for the bi-quadratic problem with NI = NO = 64
Table 6 Inconsistency and discrepancy from best know solution for the geometric programming problem with NI = NO = 64
Table 7 Inconsistency and discrepancy from best know solution for the simplified wing design problem with NI = NO = 64
Table 8 Inconsistency and discrepancy from best know solution for the supersonic business jet problem with NI = NO = 64

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talgorn, B., Kokkolaras, M., DeBlois, A. et al. Numerical investigation of non-hierarchical coordination for distributed multidisciplinary design optimization with fixed computational budget. Struct Multidisc Optim 55, 205–220 (2017). https://doi.org/10.1007/s00158-016-1489-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-016-1489-z

Keywords

Navigation