Skip to main content
Log in

A discontinuous phase field approach to variational growth-based topology optimization

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

Numerical instabilities cause the well-known problem of checkerboarding during topology optimization: elements that possess material are periodically neighbored to elements that are material-free. Furthermore, such numerical solutions depend on the finite element mesh and no reasonable processing techniques exist for manufacture. Thus, integral- or gradient-based regularization techniques are usually applied during topology optimization. In this paper, a novel approach to regularization is derived for a recently published variational approach to topology optimization that is based on material growth. The presented approach shares some similarities with the discontinuous Galerkin method and completely removes consideration of additional nodal quantities or complex integration schemes. The derivation and numerical treatment of the resulting phase field equation as well as exemplary numerical results are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bendsøe MP (1989) Optimal shape design as a material distribution problem. Structural Optimization 1 (4):193–202

    Article  Google Scholar 

  • Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69(9-10):635–654

    Article  MATH  Google Scholar 

  • Bendsøe MP, Sigmund O (2003) Topology optimization: theory, methods and applications. Springer

  • Bertsekas DP (2014) Constrained optimization and Lagrange multiplier methods. Academic Press

  • Borrvall T, Petersson J (2001) Large-scale topology optimization in 3d using parallel computing. Comput Methods Appl Mech Eng 190(46):6201–6229

    Article  MathSciNet  MATH  Google Scholar 

  • Burger M, Stainko R (2006) Phase-field relaxation of topology optimization with local stress constraints. SIAM J Control Optim 45(4):1447–1466

    Article  MathSciNet  MATH  Google Scholar 

  • Carstensen C, Hackl K, Mielke A (2002) Non–convex potentials and microstructures in finite–strain plasticity. Proc R Soc London, Ser A: Math Phys Eng Sci 458(2018):299–317

    Article  MathSciNet  MATH  Google Scholar 

  • Coleman BD (2004) Memories of clifford truesdell. Springer, pp 1–13

  • Dimitrijevic B, Hackl K (2008) A method for gradient enhancement of continuum damage models. Tech Mech 28(1):43–52

    Google Scholar 

  • Hackl K, Fischer FD (2008) On the relation between the principle of maximum dissipation and inelastic evolution given by dissipation potentials. Proc R Soc London, Ser A: Math Phys Eng Sci 464(2089):117–132

    Article  MathSciNet  MATH  Google Scholar 

  • Han W, Reddy D (2012) Plasticity: mathematical theory and numerical analysis, vol 9. Springer Science & Business Media

  • Harrigan TP, Hamilton JJ (1994) Bone remodeling and structural optimization. J Biomech 27(3):323–328

    Article  Google Scholar 

  • Junker P (2014) An accurate, fast and stable material model for shape memory alloys. Smart Mater Struct 23(11):115010

    Article  MathSciNet  Google Scholar 

  • Junker P, Hackl K (2014) A thermo-mechanically coupled field model for shape memory alloys. Contin Mech Thermodyn:1–19

  • Junker P, Hackl K (2015) A variational growth approach to topology optimization. Struct Multidiscip Optim:1–12

  • Junker P, Jerzy M, Hackl K (2014) The principle of the minimum of the dissipation potential for non-isothermal processes. Contin Mech Thermodyn 26(3):259–268

    Article  MathSciNet  Google Scholar 

  • Klarbring A, Torstenfelt B (2010) Dynamical systems and topology optimization. Struct Multidiscip Optim 42(2):179–192

    Article  MathSciNet  MATH  Google Scholar 

  • Klarbring A, Torstenfelt B (2012) Dynamical systems, simp, bone remodeling and time dependent loads. Struct Multidiscip Optim 45(3):359–366

    Article  MathSciNet  MATH  Google Scholar 

  • Klarbring A, Torstenfelt B (2012) Lazy zone bone remodeling theory and its relation to topology optimization. Annals of Solid and Structural Mechanics 4(1-2):25–32

    Article  Google Scholar 

  • Kotucha G (2005) Regularisierung von Problemen der Topologieoptimierung unter Einbeziehung von Dichtegradienten. Inst. für Mechanik, Ruhr-University, Bochum

    Google Scholar 

  • Kotucha G, Hackl K (2003) Density gradient enhanced topology optimization of continuum structures. PAMM 3(1):292–293

    Article  Google Scholar 

  • Kuhl E, Menzel A, Steinmann P (2003) Computational modeling of growth. Comput Mech 32(1-2):71–88

    Article  MATH  Google Scholar 

  • Lazarov BS, Sigmund O (2011) Filters in topology optimization based on helmholtz-type differential equations. Int J Numer Methods Eng 86(6):765–781

    Article  MathSciNet  MATH  Google Scholar 

  • Li Q, Steven GP, Xie YM (2001) A simple checkerboard suppression algorithm for evolutionary structural optimization. Struct Multidiscip Optim 22(3):230–239

    Article  Google Scholar 

  • Rozvany GIN, Zhou M (1991) The coc algorithm, part i: cross-section optimization or sizing. Comput Methods Appl Mech Eng 89(1):281–308

    Article  Google Scholar 

  • Sigmund O, Petersson J (1998) Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Structural Optimization 16(1):68–75

    Article  Google Scholar 

  • Takezawa A, Nishiwaki S, Kitamura M (2010) Shape and topology optimization based on the phase field method and sensitivity analysis. J Comput Phys 229(7):2697–2718

    Article  MathSciNet  MATH  Google Scholar 

  • Waffenschmidt T, Menzel A (2012) Application of an anisotropic growth and remodelling formulation to computational structural design. Mech Res Commun 42:77–86

    Article  Google Scholar 

  • Wallin M, Ristinmaa M (2013) Howard’s algorithm in a phase-field topology optimization approach. Int J Numer Methods Eng 94(1):43–59

    Article  MathSciNet  Google Scholar 

  • Wallin M, Ristinmaa M, Askfelt H (2012) Optimal topologies derived from a phase-field method. Struct Multidiscip Optim 45(2):171–183

    Article  MathSciNet  MATH  Google Scholar 

  • Yang RJ, Chen CJ (1996) Stress-based topology optimization. Structural Optimization 12(2-3):98–105

    Article  Google Scholar 

  • Zhou S, Wang MYu (2007) Multimaterial structural topology optimization with a generalized cahn–hilliard model of multiphase transition. Struct Multidiscip Optim 33(2):89–111

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgment

We thank U. Hoppe for helpful discussions and critical remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Junker.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Junker, P., Hackl, K. A discontinuous phase field approach to variational growth-based topology optimization. Struct Multidisc Optim 54, 81–94 (2016). https://doi.org/10.1007/s00158-016-1398-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-016-1398-1

Keywords

Navigation