Skip to main content
Log in

Relaxation approach to topology optimization of frame structure under frequency constraint

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

This paper deals with the frame topology optimization under the frequency constraint and proposes an algorithm that solves a sequence of relaxation problems to obtain a local optimal solution with high quality. It is known that an optimal solution of this problem often has multiple eigenvalues and the feasible set is disconnected. Due to these two difficulties, conventional nonlinear programming approaches often converge to a local optimal solution that is unacceptable from a practical point of view. In this paper, we formulate the frequency constraint as a positive semidefinite constraint of a certain symmetric matrix, and then relax this constraint to make the feasible set connected. The proposed algorithm solves a sequence of the relaxation problems with gradually decreasing the relaxation parameter. The positive semidefinite constraint is treated with the logarithmic barrier function and, hence, the algorithm finds no difficulty in multiple eigenvalues of a solution. Numerical experiments show that global optimal solutions, or at least local optimal solutions with high qualities, can be obtained with the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. This formula was suggested by Broyden (1970a, b), Fletcher (1970), Goldfarb (1970), and Shanno (1970) independently; see, e.g., Fletcher (1987) and Nocedal and Wright (2006) for more accounts.

  2. See, e.g., Calafiore and El Ghaoui (2014) and Nocedal and Wright (2006) for accounts of the Armijo condition.

  3. See, e.g., (Yamashita and Yabe 2015) for survey on numerical solutions of nonlinear SDP.

References

  • Achtziger W, Kočvara M (2007) Structural topology optimization with eigenvalues. SIAM J Optim 18:1129–1164

    Article  MathSciNet  MATH  Google Scholar 

  • Achtziger W, Kočvara M (2007) On the maximization of the fundamental eigenvalue in topology optimization. Struct Multidiscip Optim 34:181–195

    Article  MathSciNet  MATH  Google Scholar 

  • Anjos MF, Lasserre JB (eds) (2012) Handbook on Semidefinite, Conic and Polynomial Optimization. Springer, New York

  • Ben-Tal A, Jarre F, Kočvara M, Nemirovski A, Zowe J (2000) Optimal design of trusses under a nonconvex global buckling constraint. Optim Eng 1:189–213

    Article  MathSciNet  MATH  Google Scholar 

  • Boyd S, Vandenberghe L (2004) Convex Optimization. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Broyden CG (1970a) The convergence of a class of double rank minimization algorithms. 1 General considerations. Journal of the Institute of Mathematics and Its Applications 6:76–90

  • Broyden CG (1970b) The convergence of a class of double rank minimization algorithms. 2 The new algorithm. Journal of the Institute of Mathematics and Its Applications 6:222–231

  • Calafiore G, El Ghaoui L (2014) Optimization Models. Cambridge University Press, Cambridge

    Google Scholar 

  • Cheng GD, Guo X (1997) ε-relaxed approach in structural topology optimization. Structural Optimization 13:258–266

    Article  Google Scholar 

  • Cheng G, Liu X (2011) Discussion on symmetry of optimum topology design. Struct Multidiscip Optim 44:713–717

    Article  MathSciNet  MATH  Google Scholar 

  • Czyz JA, Lukasiewicz SA (1998) Multimodal optimization of space frames for maximum frequency. Comput Struct 66:187–199

    Article  MATH  Google Scholar 

  • Fletcher R (1970) A new approach to variable metric algorithms. Comput J 13:317–322

    Article  MATH  Google Scholar 

  • Fletcher R (1987) Practical Methods of Optimization, 2nd edn. Wiley, Chichester

    MATH  Google Scholar 

  • Goldfarb D (1970) A family of variable metric methods derived by variational means. Math Comput 24:23–26

    Article  MathSciNet  MATH  Google Scholar 

  • Grandhi R (1993) Structural optimization with frequency constraints—A review. AIAA J 31:2296–2303

    Article  MATH  Google Scholar 

  • Guo X, Cheng G (2004) Epsilon-continuation approach for truss topology optimization. Acta Mech Sinica 20:526–533

    Article  Google Scholar 

  • Henrion D, Lasserre J-B (2006) Convergent relaxations of polynomial matrix inequalities and static output feedback. IEEE Trans Autom Control 51:192–202

    Article  MathSciNet  Google Scholar 

  • Hiriart-Urruty J-B, Ye D (1995) Sensitivity analysis of all eigenvalues of a symmetric matrix. Numer Math 70:45–72

    Article  MathSciNet  MATH  Google Scholar 

  • Kanno Y, Ohsaki M, Katoh N (2001) Sequential semidefinite programming for optimization of framed structures under multimodal buckling constraints. Int J Struct Stab Dyn 1:585–602

    Article  MATH  Google Scholar 

  • Kanno Y, Ohsaki M, Murota K, Katoh N (2001) Group symmetry in interior-point methods for semidefinite program. Optim Eng 2:293–320

    Article  MathSciNet  MATH  Google Scholar 

  • Kojima M, Muramatsu M (2007) An extension of sums of squares relaxations to polynomial optimization problems over symmetric cones. Math Program 110:315–336

    Article  MathSciNet  MATH  Google Scholar 

  • Liu X, Cheng G, Yan J, Jiang L (2012) Singular optimum topology of skeletal structures with frequency constraints by AGGA. Struct Multidiscip Optim 45:451–466

    Article  Google Scholar 

  • McGee OG, Phan KF (1992) Adaptable optimality criterion techniques for large-scale space frames with multiple frequency constraints. Comput Struct 42:197–210

    Article  MATH  Google Scholar 

  • Murota K, Kanno Y, Kojima M, Kojima S (2010) A numerical algorithm for block-diagonal decomposition of matrix ∗-algebras with application to semidefinite programming. Jpn J Ind Appl Math 27:125–160

    Article  MathSciNet  MATH  Google Scholar 

  • Nakamura T, Ohsaki M (1992) A natural generator of optimum topology of plane trusses for specified fundamental frequency. Comput Methods Appl Mech Eng 94:113–129

    Article  MATH  Google Scholar 

  • Neves MM, Rodrigues H, Guedes JM (1995) Generalized topology criterion design of structures with a buckling load. Structural Optimization 10:71–78

    Article  Google Scholar 

  • Ni C, Yan J, Cheng G, Guo X (2014) Integrated size and topology optimization of skeletal structures with exact frequency constraints. Struct Multidiscip Optim 50:113–128

    Article  Google Scholar 

  • Nocedal J, Wright SJ (2006) Numerical Optimization, 2nd edn. Springer, New York

    MATH  Google Scholar 

  • Ohsaki M, Fujisawa K, Katoh N, Kanno Y (1999) Semi-definite programming for topology optimization of trusses under multiple eigenvalue constraints. Comput Methods Appl Mech Eng 180:203–217

    Article  MATH  Google Scholar 

  • Pedersen NL (2000) Maximization of eigenvalues using topology optimization. Struct Multidiscip Optim 20:2–11

    Article  Google Scholar 

  • Pedersen NL, Nielsen AK (2003) Optimization of practical trusses with constraints on eigenfrequencies, displacements, stresses, and buckling. Struct Multidiscip Optim 25:436–445

    Article  Google Scholar 

  • Pereira JT, Fancello EA, Barcellos CS (2004) Topology optimization of continuum structures with material failure constraints. Struct Multidiscip Optim 26:50–66

    Article  MathSciNet  MATH  Google Scholar 

  • Petersson J (2001) On continuity of the design-to-state mappings for trusses with variable topology. Int J Eng Sci 30:1119–1141

    Article  MathSciNet  MATH  Google Scholar 

  • Rozvany GIN, Birker T (1994) On singular topologies in exact layout optimization. Structural optimization 8:228–235

    Article  Google Scholar 

  • Sergeyev O, Mróz Z (2000) Sensitivity analysis and optimal design of 3D frame structures for stress and frequency constraints. Comput Struct 75:167–185

    Article  Google Scholar 

  • Seyranian AP, Lund E, Olhoff N (1994) Multiple eigenvalues in structural optimization problem. Structural Optimization 8:207–227

    Article  Google Scholar 

  • Shanno DF (1970) Conditioning of quasi-Newton methods for function minimization. Math Comput 24:647–656

    Article  MathSciNet  MATH  Google Scholar 

  • Takezawa A, Nishiwaki S, Izui K, Yoshimura M (2007) Structural optimization based on topology optimization techniques using frame elements considering cross-sectional properties. Struct Multidiscip Optim 34:41–60

    Article  Google Scholar 

  • Tcherniak D (2002) Topology optimization of resonating structures using SIMP method. Int J Numer Methods Eng 54:1605–1622

    Article  MATH  Google Scholar 

  • The MathWorks, Inc. (2014) MATLAB Documentation. http://www.mathworks.com/

  • Wolkowicz H, Saigal R. (2000). In: Vandenberghe L (ed) Handbook on Semidefinite Programming: Theory, Algorithms and Applications. Kluwer Academic Publishers, Boston

  • Yamashita H, Yabe H (2015) A survey of numerical methods for nonlinear semidefinite programming. J Oper Res Soc Jpn 58:24–60

    Article  MathSciNet  MATH  Google Scholar 

  • Yoon GH (2010) Structural topology optimization for frequency response problem using model reduction schemes. Comput Methods Appl Mech Eng 199:1744–1763

    Article  MathSciNet  MATH  Google Scholar 

  • Yu J-F, Wang BP (2004) An optimization of frame structures with exact dynamic constraints based on Timoshenko beam theory. J Sound Vib 269:589–607

    Article  Google Scholar 

Download references

Acknowledgments

The work of the second author is partially supported by JSPS KAKENHI (C) 26420545.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihiro Kanno.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamada, S., Kanno, Y. Relaxation approach to topology optimization of frame structure under frequency constraint. Struct Multidisc Optim 53, 731–744 (2016). https://doi.org/10.1007/s00158-015-1353-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-015-1353-6

Keywords

Navigation