Skip to main content
Log in

Topology optimization study of arterial bypass configurations using the level set method

  • Medical and Bioengineering Application
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

We studied the arterial bypass design problem using a level set based topology optimization method. The blood flow in the artery was considered as the non-Newtonian flow governed by the Navier–Stokes equations coupled with the modified Cross model for the shear dependent viscosity. The fluid–solid interface is immersed in the design domain by the level set method and the fictitious porous material method. The sensitivity velocity derived by the level set based continuous adjoint method was utilized to control the evolution of the level set function. In order to accommodate the irregular analysis domains, the flow equations and the level set equations were computed on two different unstructured grids respectively. Three idealized arterial bypass configurations problems with the minimum flow shear stress objective were studied in the numerical examples. The results indicated that the optimal arterial bypass designs can effectively reduce integral of the squared shear rate in the artery and have a superior performance for the arterial grafting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33

Similar content being viewed by others

References

  • Abraham F, Behr M, Heinkenschloss M (2005a) Shape optimization in steady blood flow: a numerical study of non-Newtonian effects. Comput Methods Biomech Biomed Eng 8(2):127–137

    Article  Google Scholar 

  • Abraham F, Behr M, Heinkenschloss M (2005b) Shape optimization in unsteady blood flow: a numerical study of non-Newtonian effects. Comput Methods Biomech Biomed Eng 8(3):201–212

    Article  Google Scholar 

  • Agoshkov V, Quarteroni A, Rozza G (2006) A mathematical approach in the design of arterial bypass using unsteady stokes equations. J Sci Comput 28(2):139–165

    Article  MATH  MathSciNet  Google Scholar 

  • Allaire G, Jouve F, Toader A-M (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194(1):363–393

    Article  MATH  MathSciNet  Google Scholar 

  • Borrvall T, Petersson J (2003) Topology optimization of fluids in Stokes flow. Int J Numer Methods Fluids 41(1):77–107

    Article  MATH  MathSciNet  Google Scholar 

  • Challis VJ, Guest JK (2009) Level set topology optimization of fluids in Stokes flow. Int J Numer Methods Eng 79(10):1284–1308

    Article  MATH  MathSciNet  Google Scholar 

  • Chantalat F, Bruneau C-H, Galusinski C, Iollo A (2009) Level-set, penalization and cartesian meshes: a paradigm for inverse problems and optimal design. J Comput Phys 228(17):6291–6315

    Article  MATH  MathSciNet  Google Scholar 

  • Chen R, Cai X-C (2012) Parallel one-shot Lagrange–Newton–Krylov–Schwarz algorithms for shape optimization of steady incompressible flows. SIAM J Sci Comput 34(5):B584–B605

    Article  MATH  MathSciNet  Google Scholar 

  • Deng Y, Liu Z, Wu J, Wu Y (2013) Topology optimization of steady Navier–stokes flow with body force. Comput Methods Appl Mech Eng 255:306–321

    Article  MATH  MathSciNet  Google Scholar 

  • Duan X-B, Ma Y-C, Zhang R (2008a) Optimal shape control of fluid flow using variational level set method. Phys Lett A 372(9):1374–1379

    Article  MATH  MathSciNet  Google Scholar 

  • Duan X-B, Ma Y-C, Zhang R (2008b) Shape-topology optimization for Navier–stokes problem using variational level set method. J Comput Appl Math 222(2):487–499

    Article  MATH  MathSciNet  Google Scholar 

  • Duan X-B, Ma Y-C, Zhang R (2008c) Shape-topology optimization of stokes flow via variational level set method. Appl Math Comput 202(1):200–209

    Article  MATH  MathSciNet  Google Scholar 

  • Dur O, Coskun ST, Coskun KO, Frakes D, Kara LB, Pekkan K (2011) Computer-aided patient-specific coronary artery graft design improvements using CFD coupled shape optimizer. Cardiovasc Eng Technol 2(1):35–47

    Article  Google Scholar 

  • Ejlebjerg Jensen K, Szabo P, Okkels F (2012) Topology optimization of viscoelastic rectifiers. Applied Physics Letters 100 (23):234102-234102-234103

  • http://www.freefem.org/ff++/

  • Kim YS, Lee S-H, Choi HS, Park IH (2009) Shape formation of ferrofluid under external magnetic fields using level set method. J Appl Phys 105(7):07D539–507D539, 533

    Google Scholar 

  • Kreissl S, Maute K (2012) Levelset based fluid topology optimization using the extended finite element method. Struct Multidiscip Optim 46(3):311–326

    Article  MATH  MathSciNet  Google Scholar 

  • Kreissl S, Pingen G, Maute K (2011) An explicit level set approach for generalized shape optimization of fluids with the lattice Boltzmann method. Int J Numer Methods Fluids 65(5):496–519

    Article  MATH  Google Scholar 

  • Lassila T, Manzoni A, Quarteroni A, Rozza G (2013) Boundary control and shape optimization for the robust design of bypass anastomoses under uncertainty. ESAIM: Mathematical Modelling and Numerical Analysis 47(4):1107–1131

  • Leuprecht A, Perktold K (2001) Computer simulation of non-Newtonian effects on blood flow in large arteries. Comput Methods Biomech Biomed Eng 4(2):149–163

    Article  Google Scholar 

  • Manzoni A, Quarteroni A, Rozza G (2012a) Model reduction techniques for fast blood flow simulation in parametrized geometries. Int J Numer Methods Biomed Eng 28(6–7):604–625

    Article  MathSciNet  Google Scholar 

  • Manzoni A, Quarteroni A, Rozza G (2012b) Shape optimization for viscous flows by reduced basis methods and free‐form deformation. Int J Numer Methods Fluids 70(5):646–670

    Article  MathSciNet  Google Scholar 

  • Marsden AL, Feinstein JA, Taylor CA (2008) A computational framework for derivative-free optimization of cardiovascular geometries. Comput Methods Appl Mech Eng 197(21):1890–1905

    Article  MATH  MathSciNet  Google Scholar 

  • Osher S, Fedkiw R (2003) Level set methods and dynamic implicit surfaces. Springer

  • Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J Comput Phys 79(1):12–49

    Article  MATH  MathSciNet  Google Scholar 

  • Peng D, Merriman B, Osher S, Zhao H, Kang M (1999) A PDE-based fast local level set method. J Comput Phys 155(2):410–438

    Article  MATH  MathSciNet  Google Scholar 

  • Pingen G, Maute K (2010) Optimal design for non-Newtonian flows using a topology optimization approach. Comput Math Appl 59(7):2340–2350

    Article  MATH  MathSciNet  Google Scholar 

  • Pingen G, Waidmann M, Evgrafov A, Maute K (2010) A parametric level-set approach for topology optimization of flow domains. Struct Multidiscip Optim 41(1):117–131

    Article  MATH  MathSciNet  Google Scholar 

  • Probst M, Lülfesmann M, Bücker H, Behr M, Bischof C (2010a) Sensitivity of shear rate in artificial grafts using automatic differentiation. Int J Numer Methods Fluids 62(9):1047–1062

    MATH  Google Scholar 

  • Probst M, Lülfesmann M, Nicolai M, Bücker HM, Behr M, Bischof CH (2010b) Sensitivity of optimal shapes of artificial grafts with respect to flow parameters. Comput Methods Appl Mech Eng 199(17):997–1005

    Article  MATH  Google Scholar 

  • Quarteroni A, Rozza G (2003) Optimal control and shape optimization of aorto-coronaric bypass anastomoses. Math Model Methods Appl Sci 13(12):1801–1823

    Article  MATH  MathSciNet  Google Scholar 

  • Rozza G (2005) On optimization, control and shape design of an arterial bypass. Int J Numer Methods Fluids 47(10–11):1411–1419

    Article  MATH  MathSciNet  Google Scholar 

  • Sethian JA (1999) Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science, vol 3. Press, Cambridge University

    MATH  Google Scholar 

  • Sethian JA, Wiegmann A (2000) Structural boundary design via level set and immersed interface methods. J Comput Phys 163(2):489–528

    Article  MATH  MathSciNet  Google Scholar 

  • Sussman M, Smereka P, Osher S (1994) A level set approach for computing solutions to incompressible two-phase flow. J Comput Phys 114(1):146–159

    Article  MATH  Google Scholar 

  • Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192(1):227–246

    Article  MATH  Google Scholar 

  • Zhang B, Liu XM, Sun JJ Topology optimization for Stokes problem under multiple flow cases using an improved level set method. In: Proceedings of the ASME 2013 Fluids Engineering Division Summer Meeting (FEDSM2013), Paper FEDSM2013-16155, Nevada, USA, 2013

  • Zhou S, Li Q (2008) A variational level set method for the topology optimization of steady-state Navier–stokes flow. J Comput Phys 227(24):10178–10195

    Article  MATH  MathSciNet  Google Scholar 

  • Zienkiewicz OC, Taylor RL, Nithiarasu P (2005) The finite element method for fluid dynamics, sixth edition. Elsevier

Download references

Acknowledgment

This study was supported by the National Natural Science Foundation of China (Grant NO. 11272251).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaomin Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Liu, X. Topology optimization study of arterial bypass configurations using the level set method. Struct Multidisc Optim 51, 773–798 (2015). https://doi.org/10.1007/s00158-014-1175-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-014-1175-y

Keyword

Navigation