Skip to main content

Advertisement

Log in

Evaluation of endothelial damage in sepsis-related ARDS using circulating endothelial cells

  • Original
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Purpose

Endothelial cell activation and dysfunction are involved in the pathophysiology of ARDS. Circulating endothelial cells (CECs) may be a useful marker of endothelial dysfunction and damage but have been poorly studied in ARDS. We hypothesized that the CEC count may be elevated in patients with sepsis-related ARDS compared to those with sepsis without ARDS.

Methods

ARDS was defined according to the Berlin consensus definition. The study population included 17 patients with moderate or severe ARDS, 9 with mild ARDS, 13 with sepsis and no ARDS, 13 non-septic patients, and 12 healthy volunteers. Demographic, hemodynamic, and prognostic variables, including PaO2/FiO2 ratio, 28-day survival, blood lactate, APACHE II, and SOFA score, were recorded. CECs were counted in arterial blood samples using the reference CD146 antibody-based immunomagnetic isolation and UEA1-FITC staining method. Measurements were performed 12–24 h after diagnosis of ARDS and repeated daily for 3 days.

Results

The median day-1 CEC count was significantly higher in patients with moderate or severe ARDS than in mild ARDS or septic-control patients [27.2 (18.3–49.4) vs. 17.4 (11–24.5) cells/ml (p < 0.034), and 18.4 (9.1–31) cells/ml (p < 0.035), respectively]. All septic patients (with or without ARDS) had higher day-1 CEC counts than the non-septic patients [19.6 (14.2–30.6) vs. 10.8 (5.7–13.2) cells/ml, p = 0.002].

Conclusion

The day-1 CEC count was significantly higher in ARDS patients than in other critically ill patients, and in moderate or severe ARDS patients compared to those with milder disease, making it a potentially useful marker of ARDS severity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ware LB, Matthay MA (2000) The acute respiratory distress syndrome. N Engl J Med 342:1334–1349

    Article  CAS  PubMed  Google Scholar 

  2. Zambon M, Vincent J-L (2008) Mortality rates for patients with acute lung injury/ARDS have decreased over time. Chest 133:1120–1127

    Article  PubMed  Google Scholar 

  3. Rubenfeld GD, Caldwell E, Peabody E, Weaver J, Martin DP, Neff M, Stern EJ, Hudson LD (2005) Incidence and outcomes of acute lung injury. N Engl J Med 353:1685–1693

    Article  CAS  PubMed  Google Scholar 

  4. The Acute Respiratory Distress Syndrome Network (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342:1301–1308

    Article  Google Scholar 

  5. Guérin C, Reignier J, Richard JC, Beuret P, Gacouin A, Boulain T, Mercier E, Badet M, Mercat A, Baudin O, Clavel M, Chatellier D, Jaber S, Rosselli S, Mancebo J, Sirodot M, Hilbert G, Bengler C, Richecoeur J, Gainnier M, Bayle F, Bourdin G, Leray V, Girard R, Baboi L, Ayzac L, PROSEVA Study Group (2013) Prone positioning in severe acute respiratory distress syndrome. N Engl J Med 368:2159–2168

    Article  PubMed  Google Scholar 

  6. Peek GJ, Elbourne D, Mugford M, Tiruvoipati R, Wilson A, Allen E, Clemens F, Firmin R, Hardy P, Hibbert C, Jones N, Killer H, Thalanany M, Truesdale A (2010) Randomised controlled trial and parallel economic evaluation of conventional ventilatory support versus extracorporeal membrane oxygenation for severe adult respiratory failure (CESAR). Health Technol Assess Winch Engl 14:1–46

    CAS  Google Scholar 

  7. Orfanos SE, Mavrommati I, Korovesi I, Roussos C (2004) Pulmonary endothelium in acute lung injury: from basic science to the critically ill. Intensive Care Med 30:1702–1714

    Article  CAS  PubMed  Google Scholar 

  8. Wort SJ, Evans TW (1999) The role of the endothelium in modulating vascular control in sepsis and related conditions. Br Med Bull 55:30–48

    Article  CAS  PubMed  Google Scholar 

  9. Johnson ER, Matthay MA (2010) Acute lung injury: epidemiology, pathogenesis, and treatment. J Aerosol Med Pulm Drug Deliv 23:243–252

    Article  PubMed Central  PubMed  Google Scholar 

  10. Ware LB, Eisner MD, Thompson BT, Parsons PE, Matthay MA (2004) Significance of von Willebrand factor in septic and nonseptic patients with acute lung injury. Am J Respir Crit Care Med 170:766–772

    Article  PubMed  Google Scholar 

  11. Calfee CS, Ware LB, Eisner MD, Parsons PE, Thompson BT, Wickersham N, Matthay MA, NHLBI ARDS Network (2008) Plasma receptor for advanced glycation end products and clinical outcomes in acute lung injury. Thorax 63:1083–1089

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Eisner MD, Parsons P, Matthay MA, Ware L, Greene K, Acute Respiratory Distress Syndrome Network (2003) Plasma surfactant protein levels and clinical outcomes in patients with acute lung injury. Thorax 58:983–988

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Burnham EL, Taylor WR, Quyyumi AA, Rojas M, Brigham KL, Moss M (2005) Increased circulating endothelial progenitor cells are associated with survival in acute lung injury. Am J Respir Crit Care Med 172:854–860

    Article  PubMed  Google Scholar 

  14. Yoder MC (2009) Defining human endothelial progenitor cells. J Thromb Haemost 7(Suppl 1):49–52

    Article  CAS  PubMed  Google Scholar 

  15. Blann AD, Woywodt A, Bertolini F, Bull TM, Buyon JP, Clancy RM, Haubitz M, Hebbel RP, Lip GY, Mancuso P, Sampol J, Solovey A, Dignat-George F (2005) Circulating endothelial cells. Biomarker of vascular disease. Thromb Haemost 93:228–235

    CAS  PubMed  Google Scholar 

  16. Woywodt A, Blann AD, Kirsch T, Erdbruegger U, Banzet N, Haubitz M, Dignat-George F (2006) Isolation and enumeration of circulating endothelial cells by immunomagnetic isolation: proposal of a definition and a consensus protocol. J Thromb Haemost JTH 4:671–677

    Article  CAS  Google Scholar 

  17. Mutunga M, Fulton B, Bullock R, Batchelor A, Gascoigne A, Gillespie JI, Baudouin SV (2001) Circulating endothelial cells in patients with septic shock. Am J Respir Crit Care Med 163:195–200

    Article  CAS  PubMed  Google Scholar 

  18. Schlichting DE, Waxman AB, O’Brien LA, Wang T, Naum CC, Rubeiz GJ, Um SL, Williams M, Yan SC (2011) Circulating endothelial and endothelial progenitor cells in patients with severe sepsis. Microvasc Res 81:216–221

    Article  PubMed  Google Scholar 

  19. Moussa MD, Santonocito C, Fagnoul D, Donadello K, Pradier O, Gaussem P, De Backer D, Vincent JL (2012) Evaluation of endothelial damage in sepsis-related ARDS using circulating endothelial cell counts. Crit Care Med 12:105 (abst)

    Google Scholar 

  20. Definition Task Force ARDS, Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, Fan E, Camporota L, Slutsky AS (2012) Acute respiratory distress syndrome: the Berlin definition. JAMA 307:2526–2533

    Google Scholar 

  21. Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, Cohen J, Opal SM, Vincent JL, Ramsay G (2003) 2001 SCCM/ESICM/ACCP/ATS/SIS international sepsis definitions conference. Crit Care Med 31:1250–1256

    Article  PubMed  Google Scholar 

  22. Smadja DM, Mauge L, Sanchez O, Silvestre JS, Guerin C, Godier A, Henno P, Gaussem P, Israël-Biet D (2010) Distinct patterns of circulating endothelial cells in pulmonary hypertension. Eur Respir J 36:1284–1293

    Article  CAS  PubMed  Google Scholar 

  23. Smadja DM, Gaussem P, Mauge L, Israël-Biet D, Dignat-George F, Peyrard S, Agnoletti G, Vouhé PR, Bonnet D, Lévy M (2009) Circulating endothelial cells: a new candidate biomarker of irreversible pulmonary hypertension secondary to congenital heart disease. Circulation 119:374–381

    Article  PubMed  Google Scholar 

  24. Wen J, Chen J, Ji S-M, Cheng D, Liu ZH (2012) Evaluation of vascular lesions using circulating endothelial cells in renal transplant patients. Clin Transplant 26:E344–E350

    Article  PubMed Central  PubMed  Google Scholar 

  25. Zimmerman GA, Albertine KH, Carveth HJ, Gill EA, Grissom CK, Hoidal JR, Imaizumi T, Maloney CG, McIntyre TM, Michael JR, Orme JF, Prescott SM, Topham MS (1999) Endothelial activation in ARDS. Chest 116:18S–24S

    Article  CAS  PubMed  Google Scholar 

  26. Meyrick B (1986) Pathology of the adult respiratory distress syndrome. Crit Care Clin 2:405–428

    CAS  PubMed  Google Scholar 

  27. Walenta KLH, Link A, Friedrich EB, Böhm M (2009) Circulating microparticles in septic shock. Am J Respir Crit Care Med 180:100

    Article  PubMed  Google Scholar 

  28. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–967

    Article  CAS  PubMed  Google Scholar 

  29. Burnham EL, Taylor WR, Quyyumi AA, Rojas M, Brigham KL, Moss M (2005) Increased circulating endothelial progenitor cells are associated with survival in acute lung injury. Am J Respir Crit Care Med 172:854–860

    Article  PubMed  Google Scholar 

  30. Gao X, Chen W, Liang Z, Chen L (2011) Autotransplantation of circulating endothelial progenitor cells protects against lipopolysaccharide-induced acute lung injury in rabbit. Int Immunopharmacol 11:1584–1590

    Article  CAS  PubMed  Google Scholar 

  31. Cribbs SK, Sutcliffe DJ, Taylor WR, Rojas M, Easley KA, Tang L, Brigham KL, Martin GS (2012) Circulating endothelial progenitor cells inversely associate with organ dysfunction in sepsis. Intensive Care Med 38:429–436

    Article  PubMed Central  PubMed  Google Scholar 

  32. Rafat N, Hanusch C, Brinkkoetter PT, Schulte J, Brade J, Zijlstra JG, van der Woude FJ, van Ackern K, Yard BA, Beck GCh (2007) Increased circulating endothelial progenitor cells in septic patients: correlation with survival. Crit Care Med 35:1677–1684

    Article  PubMed  Google Scholar 

  33. Hristov M, Erl W, Weber PC (2003) Endothelial progenitor cells: isolation and characterization. Trends Cardiovasc Med 13:201–206

    Article  CAS  PubMed  Google Scholar 

  34. Peichev M, Naiyer AJ, Pereira D, Zhu Z, Lane WJ, Williams M, Oz MC, Hicklin DJ, Witte L, Moore MA, Rafii S (2000) Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood 95:952–958

    CAS  PubMed  Google Scholar 

  35. Yoder MC, Mead LE, Prater D, Krier TR, Mroueh KN, Li F, Krasich R, Temm CJ, Prchal JT, Ingram DA (2007) Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood 109:1801–1809

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Zhang SJ, Zhang H, Wei YJ, Su WJ, Liao ZK, Hou M, Zhou JY, Hu SS (2006) Adult endothelial progenitor cells from human peripheral blood maintain monocyte/macrophage function throughout in vitro culture. Cell Res 16:577–584

    Article  CAS  PubMed  Google Scholar 

  37. Kotb NA, Gaber R, Salah W, Elhendy A (2012) Relations among glycemic control, circulating endothelial cells, nitric oxide, and flow mediated dilation in patients with type 2 diabetes mellitus. Exp Clin Endocrinol Diabetes 120:460–465

    Article  CAS  PubMed  Google Scholar 

  38. Karthikeyan VJ, Blann AD, Baghdadi S, Lane DA, Gareth Beevers D, Lip GY (2011) Endothelial dysfunction in hypertension in pregnancy: associations between circulating endothelial cells, circulating progenitor cells and plasma von Willebrand factor. Clin Res Cardiol 100:531–537

    Article  CAS  PubMed  Google Scholar 

  39. Boos CJ, Blann AD, Lip GYH (2007) Assessment of endothelial damage/dysfunction: a focus on circulating endothelial cells. Methods Mol Med 139:211–224

    Article  CAS  PubMed  Google Scholar 

  40. Lee KW, Lip GYH, Tayebjee M, Foster W, Blann AD (2005) Circulating endothelial cells, von Willebrand factor, interleukin-6, and prognosis in patients with acute coronary syndromes. Blood 105:526–532

    Article  CAS  PubMed  Google Scholar 

  41. George F, Poncelet P, Laurent JC, Massot O, Arnoux D, Lequeux N, Ambrosi P, Chicheportiche C, Sampol J (1991) Cytofluorometric detection of human endothelial cells in whole blood using S-Endo 1 monoclonal antibody. J Immunol Methods 139:65–75

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Hassane Njimi for his help with the statistical analysis. We are also grateful to Sébastien Bertil and Florence Desvard for their technical assistance in CEC isolation.

Conflicts of interest

The authors have no conflicts of interest related to this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Louis Vincent.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moussa, M.D., Santonocito, C., Fagnoul, D. et al. Evaluation of endothelial damage in sepsis-related ARDS using circulating endothelial cells. Intensive Care Med 41, 231–238 (2015). https://doi.org/10.1007/s00134-014-3589-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-014-3589-9

Keywords

Navigation