Skip to main content
Log in

Biomechanik neuer Implantate für die HTO

​Biomechanics of new implants for HTO

  • Leitthema
  • Published:
Der Orthopäde Aims and scope Submit manuscript

Zusammenfassung

In der vorliegenden Studie wurden die biomechanischen Eigenschaften von 5 verschiedenen Implantaten zur Fixierung der Tibiasegmente nach aufklappender medialer Tibiakopfosteotomie untersucht. Mithilfe einer Materialprüfmaschine wurden statische und zyklische Belastungsversuche in axialer Richtung bis zum Versagen der Knochen-Implantat-Konstruktion durchgeführt. Alle getesteten Platten wiesen eine ausreichende Stabilität unter statischer Belastung auf. Unphysiologisch hohe statische Belastungen führt bei allen Knochen-Implantat-Konstruktionen zu einer Fraktur der Gegenkortikalis. Die Ergebnisse der zyklischen Versagungstests zeigen einen Zusammenhang zwischen breitem proximalem Implantatdesign der ContourLock®-Platte sowie dem breiten Knochen-Implantat-Kontakt des iBalance®-Implantats und einer zunehmenden Stabilität und Steifigkeit im Vergleich zur schmalen TomoFix™- und PEEKPower®-Platte auf. Klinische Studien müssen zeigen, ob die Zunahme an Stabilität und Steifigkeit der neueren Implantate die schon hohen Heilungsraten der TomoFix™- und PEEKPower®-Platte erreichen können oder ob nicht eher – der Dehnungstheorie von Perren et al. folgend – die Induktionsgrenze für die Heilungsstimulation unterschritten wird und die Komplikationen durch steifere Implantate zunehmen werden.

Abstract

Biomechanical characteristics of 5 tibial osteotomy plates for the treatment of medial knee joint osteoarthritis were examined. Fourth-generation tibial bone composites underwent a medial open-wedge high tibial osteotomy, using TomoFix™ standard, PEEKPower®, ContourLock®, TomoFix™ small stature plates, and iBalance® implants. Static compression load to failure and load-controlled cyclic fatigue failure tests were performed. All plates had sufficient stability up to 2400 N in the static compression load to failure tests. Screw breakage in the iBalance® group and opposite cortex fractures in all constructs occurred at lower loading conditions. The highest fatigue strength in terms of maximal load and number of cycles performed prior to failure was observed for the ContourLock® group followed by the iBalance® implants, the TomoFix™ standard and small stature plates. PEEKPower® had the lowest fatigue strength. All plates showed sufficient stability under static loading. Compared to the TomoFix™ and the PEEKPower® plates, the ContourLock® plate and iBalance® implant showed a higher mechanical fatigue strength during cyclic fatigue testing, suggesting that both mechanical static and fatigue strength increase with a wider proximal T‑shaped plate design together with diverging proximal screws. Mechanical strength of the bone–implant constructs decreases with a narrow T‑shaped proximal end design and converging proximal screws (TomoFix™) or a short vertical plate design (PEEKPower®). Published results indicate high fusion rates and good clinical results with the TomoFix™ plate, which is contrary to our findings. A certain amount of interfragmentary motion rather than high mechanical strength and stiffness seem to be important for bone healing which is outside the scope of this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7
Abb. 8
Abb. 9
Abb. 10
Abb. 11
Abb. 12
Abb. 13
Abb. 14
Abb. 15
Abb. 16

Literatur

  1. (1989) ISO 7206-4 Implants for surgery: Determination of endurance properties of stemmed femoral components with application of torsion. Google Scholar

  2. (1992) ISO 7206-6 Implants for surgery: Determination of endurance properties of head and neck region of stemmed femoral components. Google Scholar

  3. (1995) ISO 7206-8 Implants for surgery: Endurance performance of stemmed femoral components with application of torsion. Google Scholar

  4. Agneskirchner JD, Freiling D, Hurschler C, Lobenhoffer P (2006) Primary stability of four different implants for opening wedge high tibial osteotomy. Knee Surg Sports Traumatol Arthrosc 14:291–300

    Article  CAS  PubMed  Google Scholar 

  5. Bottlang M, Doornink J, Lujan TJ, Fitzpatrick DC, Marsh JL, Augat P, von Rechenberg B, Lesser M, Madey SM (2010) Effects of construct stiffness on healing of fractures stabilized with locking plates. J Bone Joint Surg Am 92(Suppl 2):12–22

    Article  PubMed  PubMed Central  Google Scholar 

  6. Brinkman J‑M, Hurschler C, Agneskirchner J, Lobenhoffer P, Castelein RM, Van Heerwaarden RJ (2014) Biomechanical testing of distal femur osteotomy plate fixation techniques: the role of simulated physiological loading. J Exp Orthop 1:1–7

    Article  PubMed  PubMed Central  Google Scholar 

  7. Brinkman JM, Luites JW, Wymenga AB, van Heerwaarden RJ (2010) Early full weight bearing is safe in open-wedge high tibial osteotomy. Acta Orthop 81:193–198

    Article  PubMed  PubMed Central  Google Scholar 

  8. Chong AC, Miller F, Buxton M, Friis EA (2007) Fracture toughness and fatigue crack propagation rate of short fiber reinforced epoxy composites for analogue cortical bone. J Biomech Eng 129:487–493

    Article  PubMed  Google Scholar 

  9. Cotic M, Vogt S, Feucht MJ, Saier T, Minzlaff P, Hinterwimmer S, Imhoff AB (2015) Prospective evaluation of a new plate fixator for valgus-producing medial open-wedge high tibial osteotomy. Knee Surg Sports Traumatol Arthrosc 23:3707–3716

    Article  PubMed  Google Scholar 

  10. Cotic M, Vogt S, Hinterwimmer S, Feucht MJ, Slotta-Huspenina J, Schuster T, Imhoff AB (2015) A matched-pair comparison of two different locking plates for valgus-producing medial open-wedge high tibial osteotomy: peek-carbon composite plate versus titanium plate. Knee Surg Sports Traumatol Arthrosc 23:2032–2040

    Article  PubMed  Google Scholar 

  11. Diffo KA, Maas S, Waldmann D, Zilian A, Dueck K, Pape D (2015) Biomechanical properties of five different currently used implants for open-wedge high tibial osteotomy. J Exp Orthop 2:14

    Article  Google Scholar 

  12. Gardner MP (2010) Mechanical evaluation of large-size fourth-generation composite femur and tibia models. Ann Biomed Eng 38:613–620

    Article  PubMed  Google Scholar 

  13. Getgood A, Collins B, Slynarski K, Kurowska E, Parker D, Engebretsen L, MacDonald PB, Litchfield R (2013) Short-term safety and efficacy of a novel high tibial osteotomy system: a case controlled study. Knee Surg Sports Traumatol Arthrosc 21:260–269

    Article  PubMed  Google Scholar 

  14. Heiner A (2008) Structural properties of fourth-generation composite femurs and tibias. J Biomech 41:3282–3284

    Article  PubMed  Google Scholar 

  15. Heinlein B, Kutzner I, Graichen F, Bender A, Rohlmann A, Halder AM, Beier A, Bergmann G (2009) ESB clinical biomechanics award 2008: Complete data of total knee replacement loading for level walking and stair climbing measured in vivo with a follow-up of 6‑101 months. Clin Biomech 24:315–326

    Article  Google Scholar 

  16. Hente R (1993) Die Dehnungstheorie als Erklärungsgrundlage der Erfolges der biologischen Osteosythese. H Unfallchirurg 232:445–447

    Google Scholar 

  17. Lobenhoffer P, Agneskirchner JD (2003) Improvements in surgical technique of valgus high tibial osteotomy. Knee Surg Sports Traumatol Arthrosc 11:132–138

    Article  PubMed  Google Scholar 

  18. Maas S, Diffo KA, Dueck K, Pape D (2013) Static and dynamic differences in fixation stability between a spacer plate and a small stature plate fixator used for high tibial osteotomies: a biomechanical bone composite study. ISRN Orthop 2013:387620. doi:10.1155/2013/387620

    Article  PubMed  PubMed Central  Google Scholar 

  19. Nelissen EM, van Langelaan EJ, Nelissen RG (2010) Stability of medial opening wedge high tibial osteotomy: a failure analysis. Int Orthop 34:217–223

    Article  CAS  PubMed  Google Scholar 

  20. Pape D, Kohn D, Van GN, Hoffmann A, Seil R, Lorbach O (2013) Differences in fixation stability between spacer plate and plate fixator following high tibial osteotomy. Knee Surg Sports Traumatol Arthrosc 21:82–89

    Article  CAS  PubMed  Google Scholar 

  21. Pape D, Lorbach O, Schmitz C, Busch LC, Van GN, Seil R, Kohn DM (2010) Effect of a biplanar osteotomy on primary stability following high tibial osteotomy: a biomechanical cadaver study. Knee Surg Sports Traumatol Arthrosc 18:204–211

    Article  PubMed  Google Scholar 

  22. Pape D, van Heerwaarden RJ, Haag M, Seil R, Madry H (2014) Kniegelenknahe Osteotomietechniken: Effekt auf Keilvolumina und knöcherne Kontaktflächen. Orthopäde 43:966–975

    Article  CAS  PubMed  Google Scholar 

  23. Perren SM (2010) Optimierung der Stabilität flexibler Osteosynthesen mit Hilfe der Dehnungstheorie. Orthopäde 39:132–138

    Article  CAS  PubMed  Google Scholar 

  24. Raja Izaham RM, Kadir AKM, Rashid AAH, Hossain MG, Kamarul T (2012) Finite element analysis of Puddu and Tomofix plate fixation for open wedge high tibial osteotomy. Injury 43:898–902

    Article  PubMed  Google Scholar 

  25. Saeed HZ, Rae PJ (2009) High tibial valgus osteotomy using the Tomofix plate – medium-term results in young patients. Acta Orthop Belg 75:360–367

    Google Scholar 

  26. Schroter S, Gonser CE, Konstantinidis L, Helwig P, Albrecht D (2011) High complication rate after biplanar open wedge high tibial osteotomy stabilized with a new spacer plate (Position HTO plate) without bone substitute. Arthroscopy 27:644–652

    Article  PubMed  Google Scholar 

  27. Spahn G, Wittig R (2002) Primary stability of various implants in tibial opening wedge osteotomy: a biomechanical study. J Orthop Sci 7:683–687

    Article  PubMed  Google Scholar 

  28. Staubli AE, De SC, Babst R, Lobenhoffer P (2003) TomoFix: a new LCP-concept for open wedge osteotomy of the medial proximal tibia – early results in 92 cases. Injury 34(Suppl 2):B55–B62

    Article  PubMed  Google Scholar 

  29. Staubli AE, Jacob HA (2010) Evolution of open-wedge high-tibial osteotomy: experience with a special angular stable device for internal fixation without interposition material. Int Orthop 34:167–172

    Article  PubMed  Google Scholar 

  30. Staubli A (2008) Radiological examination of bone healing after open-wedge tibial osteotomy. Osteotomies around the knee. Thieme, AO Foundation Publishing, Stuttgart, S 131–146

    Google Scholar 

  31. Stoffel K, Stachowiak G, Kuster M (2004) Open wedge high tibial osteotomy: biomechanical investigation of the modified arthrex osteotomy plate (Puddu plate) and the Tomofix plate. Clin Biomech (Bristol, Avon) 19:944–950

    Article  Google Scholar 

  32. Taylor WR, Heller MO, Bergmann G, Duda GN (2004) Tibio-femoral loading during human gait and stair climbing. J Orthop Res 22:625–632

    Article  PubMed  Google Scholar 

  33. Valkering KP, van den Bekerom MP, Kappelhoff FM, Albers GH (2009) Complications after tomofix medial opening wedge high tibial osteotomy. J Knee Surg 22:218–225

    Article  PubMed  Google Scholar 

  34. Watanabe K, Kamiya T, Suzuki D, Otsubo H, Teramoto A, Suzuki T, Yamashita T (2014) Biomechanical stability of open-wedge high tibial osteotomy: comparison of two locking plates. Open J Orthop 4:262

    Article  Google Scholar 

  35. Zhim F, Laflamme GY, Viens H, Saidane K, Yahia L (2005) Biomechanical stability of high tibial opening wedge osteotomy: internal fixation versus external fixation. Clin Biomech (Bristol, Avon) 20:871–876

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Pape.

Ethics declarations

Interessenkonflikt

D. Pape, A. Diffo Kaze, A. Hoffmann und S. Maas geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Additional information

Der vorliegende Beitrag basiert auf Diffo Kaze et al. (2015) Biomechanical properties of five different currently used implants for open-wedge high tibial osteotomy. J Exp Orthop 2:14. doi:10.1186/s40634-015-0030-4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pape, D., Diffo Kaze, A., Hoffmann, A. et al. Biomechanik neuer Implantate für die HTO. Orthopäde 46, 583–595 (2017). https://doi.org/10.1007/s00132-017-3417-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00132-017-3417-3

Schlüsselwörter

Keywords

Navigation