Skip to main content
Log in

Origin of REE mineralization in the Bastnäs-type Fe-REE-(Cu-Mo-Bi-Au) deposits, Bergslagen, Sweden

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

The Bastnäs-type deposits, with mineral assemblages of Fe oxides, Ca-Mg silicates, rare earth element (REE) silicates, REE fluorocarbonates, and Cu-Fe-Mo-Bi sulfides, are associated with marble horizons in a strongly Na, K, and/or Mg altered, metavolcanic succession, over a distance of at least 80 km in a SW-NE trending zone in western Bergslagen. Two subtypes occur: (1) enriched (relative to the other type) in light REE (LREE) and Fe, exemplified by the Bastnäs and Rödbergsgruvan deposits, and (2) enriched in heavy REE (HREE), Y, Mg, Ca, and F, represented by deposits in the Norberg district. Bastnäsite hosts primary fluid H2O-CO2 inclusions with salinities of 6–29 eq. wt% CaCl2 and with total homogenization temperatures (Th tot) of ca. 300–400 °C. Subtype 2 has late-stage fluorite with fluid inclusions that show 1–16 eq. wt% NaCl and Th tot of ca. 90–150 °C. Molybdenite Re-Os ages obtained from three deposits are 1,904 ± 6, 1,863 ± 4, and 1,842 ± 4 Ma. Nd isotopic data from five different REE minerals yielded no defined isochron, but a range in εNd (1.88 Ga) of +0.2 to +1.6. The oxygen isotope values (δ18OSMOW) of dolomite and calcite from the associated REE-mineralized skarn and recrystallized carbonate assemblages lie in the range 6.1–8.6 ‰, overlapping with those of the host marbles. Carbon isotope values (δ13CPDB) show typical magmatic signatures of −6.7 to −4.4 ‰, while the host marbles group around ca. −2.4 ‰. The sulfur isotope (δ34SCDT) values of associated sulfides range between −10.8 and +0.2 ‰. The combined evidence suggests REE mineralization, beginning at 1.9 Ga, from mainly Svecofennian, juvenile magmatic (>400 °C) fluids carrying Si, F, Cl, S, CO2, and the REE in addition to other metals; mineralization occurred through reactions with dolomitic layers in the supracrustal units coevally with regional metasomatic alteration associated with fluid circulation through an extensive active volcano–plutonic complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Ahijado A, Casillas R, Nagy G, Fernández C (2005) Sr-rich minerals in a carbonatite skarn, Fuerteventura, Canary Islands (Spain). Mineral Petrol 84:107–127

    Google Scholar 

  • Al-Aasm IS, Taylor BE, South B (1990) Stable isotope analysis of multiple carbonate samples using selective acid extraction. Chem Geol (Isotope Section) 80:119–125

    Google Scholar 

  • Allaz J, Stern C, Persson, P, Raschke M (2013) Proterozoic fluorbritholite-bearing REE-rich hydrothermal pods and veins from near Jamestown, Colorado. Abstracts, 2013 GSA Annual Meeting in Denver: 125th Anniversary of GSA

  • Allen RL, Lundström I, Ripa M, Simeonov AH (1996) Facies analysis of a 19 Ga, continental margin, back-arc, felsic caldera province with diverse Zn-Pb-Ag-(Cu-Au) sulphide and Fe oxide deposits, Bergslagen region, Sweden. Econ Geol 91:979–1008

    Google Scholar 

  • Ambros M (1983) Beskrivning till berggrundskartan Lindesberg NO. Sver Geol Unders Af 141:1–75 (in Swedish)

    Google Scholar 

  • Ambros M (1988) Beskrivning till berggrundskartorna Avesta NV och SV. Sver Geol Unders Af 152–153:1–84 (in Swedish)

    Google Scholar 

  • Andersson UB (1997) The late Svecofennian, high-grade contact and regional metamorphism in southwestern Bergslagen (central southern Sweden). Final report 970519, SGU-project 03-819/93, 36 pp (unpublished)

  • Andersson UB, Öhlander B (2004) The late Svecofennian magmatism. In: Högdahl K, Andersson UB, Eklund O (eds) The Transscandinavian Igneous Belt (TIB) in Sweden: a review of its character and evolution. Geol Surv Finland 37:102–104

  • Andersson UB, Wikström A (2004) The Småland-Värmland belt (SVB). Overview. In: Högdahl K, Andersson UB, Eklund O (eds) The Transscandinavian Igneous Belt (TIB) in Sweden: a review of its character and evolution. Geol Surv Finland 37:15–20

  • Andersson UB, Högdahl K, Sjöström H, Bergman S (2006) Multistage growth and reworking of the Palaeoproterozoic crust in the Bergslagen area, southern Sweden: evidence from U-Pb geochronology. Geol Mag 143:679–697

    Google Scholar 

  • Antonini P, Comion-Chiaramonti P, Gomes CB, Censi P, Riffel BF, Yamamoto E (2003) The Early Proterozoic carbonatite complex Angico dos Dias, Bahia State, Brazil: geochemical and Sr-Nd isotopic evidence for an enriched mantel origin. Min Mag 67:1039–1057

    Google Scholar 

  • Arzamastsev AA, Arzamastseva LV, Bea F, Montero P (2009) Trace elements in minerals as indicators of the evolution of alkaline ultrabasic dike series: LA-ICP-MS data for the magmatic provinces of northeastern Fennoscandia and Germany. Petrology 17:46–72

    Google Scholar 

  • Baker JH, de Groot PA (1983) Proterozoic seawater—felsic volcanics interaction W. Bergslagen, Sweden. Evidence for high REE mobility and implications for 1.8 Ga seawater compositions. Contrib Mineral Petrol 82:119–130

    Google Scholar 

  • Baker JH, Hellingwerf RH (1988) Rare earth element geochemistry of W-Mo-(Au) skarns and granites from Western Bergslagen, central Sweden. Mineral Petrol 39:231–244

    Google Scholar 

  • Bakker RJ, Dubessy J, Cathelineau M (1996) Improvements in clathrate modelling: I. The H2O-CO2 system with various salts. Geochim Cosmochim Acta 60:1657–1681

    Google Scholar 

  • Beunk FF, Kuipers G (2012) The Bergslagen ore province, Sweden: review and update of an accreted orocline, 1.9-1.8 Ga BP. Precambrian Res 216–219:95–119

    Google Scholar 

  • Billström K (1991) Sulphur isotope compositions in the Åmmeberg Zn-Pb ore deposit, south-central Sweden: Genetic implications. Geol Rundsch 80:717–727

    Google Scholar 

  • Billström K, Åberg G, Nord AG (1985) Stable istope data of Bergslagen carbonates and their potential use for sulphide ore prospecting. Geol Foren Stockholm Forhandl 107:169–173

    Google Scholar 

  • Billström K, Åberg G, Öhlander B (1988) Isotopic and geochemical data of the Pingstaberg Mo-bearing granite in Bergslagen, south central Sweden. Geol Mijnb 67:255–263

    Google Scholar 

  • Billström K, Eilu P, Martinsson O, Niiranen T, Broman C, Weihed P, Wanhainen C, Ojala J (2010) IOCG and related mineral deposits of the northern Fennoscandian Shield. In: Porter TM (ed) Hydrothermal iron oxide copper-gold & related deposits, a global perspective, vol. 4. PGC Publishing, Adelaide, pp 381–414

  • Blevin PL, Chappell BW (2004) Chemistry, origin, and evolution of mineralized granites in the Lachlan fold belt, Australia; the metallogeny of I- and S-type granites. Econ Geol 90:1604–1619

    Google Scholar 

  • Bodnar RJ (1993) Revised equation and table for determining the freezing point depression of H2O-NaCl solutions. Geochim Cosmochim Acta 57:683–684

    Google Scholar 

  • Boynton WV (1984) Cosmochemistry of the rare earth elements meteorite studies. In: Henderson P (ed) Rare earth element geochemistry. Elsevier, Amsterdam, pp 63–114

    Google Scholar 

  • Campbell LS, Henderson P (1997) Apatite paragenesis in the Bayan Obo REE-Nb-Fe ore deposit, Inner Mongolia, China. Lithos 42:89–103

    Google Scholar 

  • Carlborg, H (1923) Ekonomisk-teknisk beskrivning. In: Riddarhytte malmfält i Skinnskattebergs socken i Västmanlands län. (Kungl Kommerskoll and Sver Geol Unders Victor Pettersson, Stockholm) pp 1–138 (in Swedish)

  • Castor SB (2008) The Mountain Pass rare-earth carbonatite and associated ultrapotassic rocks. Can Mineral 46:779–806

    Google Scholar 

  • Castor SB, Hedrick JB (2006) Rare earth elements. In: Kogel JE, Trivedi NC, Barker JM (eds) Industrial minerals and rocks. Society for Mining, Metallurgy and Exploration, pp 769–792

    Google Scholar 

  • Chakhmouradian AR, Wall F (2012) Rare earth elements. Elements 8:330–376

    Google Scholar 

  • Chakhmouradian AR, Zaitsev AN (2002) Calcite–amphibole–clinopyroxene rock from the Afrikanda Complex, Kola Peninsula, Russia: mineralogy and a possible link to carbonatites. III. Silicate minerals. Can Mineral 40:1347–1374

    Google Scholar 

  • Chambefort I, Dilles JH, Longo AA (2013) Amphibole geochemistry of the Yanacocha volcanics, Peru: evidence for diverse sources of magmatic volatiles related to gold ores. J Petr 54:1017–1046

    Google Scholar 

  • Chao ECT, Back JM, Minkin JA, Ren Y (1992) Host-rock controlled epigenetic, hydrothermal metasomatic origin of the Bayan Obo REE-Fe-Nb ore deposit, Inner Mongolia, P.R.C. Appl Geochem 7:443–458

    Google Scholar 

  • Chao ECT, Back JM, Minkin JA, Tatsumoto M, Wang J, Conrad JE, Makee EH, Hou Z, Meng Q, Huang S (1997) The sedimentary carbonate-hosted giant Bayan Obo REE-Fe-Nb ore deposit of Inner Mongolia, China: a cornerstone example for giant polymetallic ore deposits of hydrothermal original. USGS Bull 2143:1–65

    Google Scholar 

  • Cortesogno L, Gaggero L, Zanetti A (2000) Rare earth and trace elements in igneous and high-temperature metamorphic minerals of oceanic gabbros (MARK area, Mid-Atlantic ridge). Contrib Mineral Petrol 139:373–393

    Google Scholar 

  • Davis DW, Lowenstein TK, Spencer RJ (1990) Melting behavior of fluid inclusions in laboratory-grown halite crystals in the systems NaCl-H2O, NaCl-KCl-H2O, NaCl-MgCl2-H2O, and NaCl-CaCl2-H2O. Geochim Cosmochim Acta 54:591–601

    Google Scholar 

  • De Groot PA, Sheppard SMF (1988) Carbonate rocks from W Bergslagen, Central Sweden: isotopic (C, O, H) evidence for marine deposition and alteration by hydrothermal processes. Geol Mijnb 67:177–188

    Google Scholar 

  • Deer WA, Howie RA, Zussman J (1997) Rock-forming minerals. Volume 1A: Orthosilicates. 2nd Edition, Geological Society, London

  • Deines P, Gold DP (1973) The isotopic composition of carbonatite and kimberlite carbonates and their bearing on the isotopic composition of deep-seated carbon. Geochim Cosmochim Acta 37:1709–1733

    Google Scholar 

  • Dubois W, Marignac C (1997) The H2O-NaCl-MgCl2 ternary phase diagram with special application to fluid inclusion studies. Econ Geol 92:114–119

    Google Scholar 

  • Dumańska-Słowik M, Budzyń B, Heflik W, Sikorska M (2012) Stability relationships of REE-bearing phosphates in an alkali-rich system (nepheline syenite from the Mariupol Massif, SE Ukraine). Acta Geol Polonica 62:247–265

    Google Scholar 

  • Ehlin P-O, Koark HJ (1980) Svecofennian paradiagenetic concretions. Neues Jahrb Geol Palaeontol, Abh Monatsh 3:145–154

    Google Scholar 

  • Ensterö B (2003) En mineralogisk studie av sulfidparageneser i Nya Bastnäsfältets lantanidmalmer, Riddarhyttan, Bergslagen. Master thesis, Department of Geology, Stockholm University. 51 pp

  • Friedman I, O’Neill JR (1977) Compilation of stable isotope fractionation factors of geochemical interest. In: Fleischer M (ed) Data of geochemistry, 6th edition (United States Geological Survey, Professional Paper 440-KK) 61 pp

  • Frietsch R (1982) Alkali metasomatism in the ore-bearing metavolcanics of central Sweden. Sver Geol Unders C 791:1–54

    Google Scholar 

  • Geijer P (1921) The cerium minerals of Bastnäs at Riddarhyttan. Sver Geol Unders C304:1–24

    Google Scholar 

  • Geijer P (1923) Geologisk beskrivning. In: Riddarhytte malmfält i Skinnskattebergs socken i Västmanlands län. (Kungl Kommerskoll and Sver Geol Unders, Victor Pettersson, Stockholm) pp 1–138 (in Swedish)

  • Geijer P (1927) Some mineral associations from the Norberg district. Sver Geol Unders C343:1–32

    Google Scholar 

  • Geijer P (1936) Norbergs berggrund och malmfyndigheter. Sver Geol Unders Ca 24:1–162

    Google Scholar 

  • Geijer P (1960) The distribution of halogens in skarn amphiboles in central Sweden. Arkiv Min Geol 2:481–504

    Google Scholar 

  • Geijer P (1961) The geological significance of the cerium mineral occurrences of the Bastnäs type in Central Sweden. Ark Min Geol 3:99–105

    Google Scholar 

  • Geijer P, Magnusson NH (1944) De mellansvenska järnmalmernas geologi. Sver Geol Unders Ca 35:1–654 (in Swedish)

    Google Scholar 

  • Groves DI, Bierlein FP, Meinert LD, Hitzman MW (2010) Iron Oxide Copper-Gold (IOCG) deposits through Earth history: implications for origin, lithospheric setting, and distinction from other epigenetic iron oxide deposits. Econ Geol 105:641–654

    Google Scholar 

  • Gschneidner KA, Bunzli J-CG, Pecharsky VK, eds (2004) Handbook on the physics and chemistry of rare earths, New York, Elsevier vol 34, 508 pp,

  • Gülteki AH, Örgün Y, Suner F (2003) Geology, mineralogy and fluid inclusion data of the Kizilcaören fluorite–barite–REE deposit, Eskisehir, Turkey. J Asian Earth Sci 21:365–376

    Google Scholar 

  • Hall DL, Sterner SM, Bodnar RJ (1988) Freezing point depression of NaCl-KCl-H2O solutions. Econ Geol 83:197–202

    Google Scholar 

  • Hallberg A (2003) Styles of hydrothermal alteration and accompanying chemical changes in the Sången formation, Bergslagen, Sweden, and adjacent areas. Economic geology research and documentation Vol 2, 2001–2002. Sver Geol Unders, Rapp Med 113:4–35

    Google Scholar 

  • Hellingwerf RH, Baker JH (1985) Wall-rock alteration and tungsten and molybdenum mineralizations associated with older granites in western Bergslagen, Sweden. Econ Geol 80:479–487

    Google Scholar 

  • Hellingwerf RH, van Raaphorst JG (1988) Sulphur isotopes from the Gruvåsen sulphide skarn deposit, Bergslagen, Sweden. Miner Petrol 38:161–170

    Google Scholar 

  • Hellingwerf RH, Baker JH, van Raaphorst JG (1987) Sulphur isotope data of Proterozoic molybdenites of western Bergslagen, Sweden. Geol Fören Förh 109:33–38

    Google Scholar 

  • Hermansson T, Stephens MB, Corfu F, Andersson J, Page L (2007) Penetrative ductile deformation and amphibolite facies metamorphism prior to 1851 Ma in the western part of the Svecofennian orogen. Fennoscandian Shield, Precambrian Res 153:29–45

    Google Scholar 

  • Hermansson T, Stephens MB, Corfu F, Page L, Andersson J (2008) Migratory tectonic switching, western Svecofennian orogen, central Sweden: Constraints from U/Pb zircon and titanite geochronology. Precambrian Res 161:250–278

    Google Scholar 

  • Hitzman MW (2000) Iron oxide-Cu-Au deposits: what, where, when, and why. In: Porter TM (ed) Hydrothermal iron oxide-copper-gold and related deposits: a global perspective. Australian Mineral Foundation, Adelaide, Australia, pp 9–25

    Google Scholar 

  • Hitzman MW, Oreskes N, Einaudi MT (1992) Geological characteristics and tectonic setting of Proterozoic iron oxide (Cu-U-Au-REE) deposits. Prec Res 58:241–287

    Google Scholar 

  • Hode Vourinen J, Hålenius U, Whitehouse MJ, Mansfeld J, Skelton ADL (2005) Compositional variations (major and trace elements) of clinopyroxene and Ti-andradite from pyroxenite, ijolite and nepheline syenite, Alnö Island, Sweden. Lithos 81:55–77

    Google Scholar 

  • Holland HD, Malinin SD (1979) The solubility and occurrence of non-ore minerals. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits. John Wiley & Sons, pp 461–508

  • Holtstam D, Andersson UB (2007) The REE minerals of the Bastnäs-type deposits, south-central Sweden. Can Mineral 45:1073–1114

    Google Scholar 

  • Holtstam D, Ensterö B (2002) Does the Bastnäs REE deposit in central Sweden belong to the Fe oxide-Cu-U-Au-REE class of ores? Abstract Volume, 25th Nordic Geological Winter Meeting, Reykjavík, Iceland, p. 83

  • Holtstam D, Mansfeld J (2001) Origin of a carbonate-hosted Fe-Mn-(Ba-As-Pb-Sb-W) deposit of Långban-type in central Sweden. Miner Deposita 36:641–657

    Google Scholar 

  • Holtstam D, Andersson UB, Mansfeld J (2003a) Ferriallanite-(Ce) from the Bastnäs deposit, Västmanland, Sweden. Can Mineral 41:1233–1240

    Google Scholar 

  • Holtstam D, Andersson UB, Norrestam R (2003b) Percleveite-(Ce)—a new lanthanide disilicate mineral from Bastnäs, Skinnskatteberg, Sweden. Eur J Mineral 15:725–731

    Google Scholar 

  • Holtstam D, Kolitsch U, Andersson UB (2005) Västmanlandite-(Ce)—a new lanthanide- and F-bearing sorosilicate mineral from Västmanland, Sweden: description, crystal structure, and relation to gatelite-(Ce). Eur J Mineral 17:129–141

    Google Scholar 

  • Hsu LC (1992) Synthesis and stability of bastnaesites in a part of the system (Ce, La)–F–H–C–O. Mineral Petrol 47:87–101

    Google Scholar 

  • Hughes CJ (1973) Spilites, keratophyres, and the igneous spectrum. Geol Mag 109:513–527

    Google Scholar 

  • Jansen JBH, van de Kraats AH, van der Rijst H, Schuiling RD (1978) Metamorphism of siliceous dolomites and Naxos, Greece. Contrib Mineral Petrol 67:279–288

    Google Scholar 

  • Johansson Å, Hålenius U (2012) Palaeoproterozoic mafic intrusions along the Avesta-Östhammar belt, east-central Sweden: mineralogy, geochemistry and magmatic evolution. Int Geol Rev 55:131–157

    Google Scholar 

  • Johansson Å, Andersson UB, Hålenius U (2012) Petrogenesis and geotectonic setting of early Svecofennian arc cumulates in the Roslagen area, east-central Sweden. Geol J 47:557–593

    Google Scholar 

  • Jones AP, Wall F, Williams CT (1996) Rare earth minerals: Chemistry, origin and ore deposits. The Mineralogical Society Series 7 Chapman, Hall, London, 372 pp

  • Jonsson E, Boyce AJ (2004) Stable isotope (C, O, S) study of the Långban Fe-Mn-(Ba-As-Pb-Sb) deposit, Bergslagen, Sweden: implications for processes and paragenesis In: Jonsson, E Fissure-hosted mineral formation and metallogensis in the Långban Fe-Mn-(Ba-As-Pb-Sb…) deposit, Bergslagen, Sweden. Meddel Stockholm Univ Inst Geol Geokem 318 (PhD thesis, unpublished)

  • Jonsson E, Högdahl K (2013) New evidence for the timing of formation of Bastnäs-type REE mineralization in Bergslagen, Sweden. Mineral deposit research for a high-tech world: Proceedings of the 12th SGA Biennial Meeting 2013 pp 1724–1727.

  • Kapustin YL (1989) Cerite and törnebohmite from fenites in the alkaline Tuva massifs. Zap Vses Mineralog Obshchestva 118:47–56 (in Russian)

    Google Scholar 

  • Karhu J (1993) Paleoproterozoic evolution of the carbon isotope ratios of sedimentary carbonates in the Fennoscandian Shield. Geol Survey Finland Bull 371:1–87

    Google Scholar 

  • Kearns LE, Kite LE, Leavens PB, Nelen JA (1980) Fluorine distribution in the hydrous silicate minerals of the Franklin Marble, Orange County, New York. Am Min 65:557–562

    Google Scholar 

  • Keller J, Hoefs J (1995) Stable isotope characteristics of recent natrocarbonatites from Oldoinyo Lengai. In: Bell K, Keller J (eds) Carbonate volcanis: Oldoinyo Lengai and the petrogenesis of natrocarbonatites (IAVCEI Proceedings in Volcanology 4. Berlin, Springer-Verlag, pp 113–123

    Google Scholar 

  • Konev A, Pasero M, Pushcharovsky D, Merlino S, Kashaev A, Suvorova L, Ushchapovskaya Z, Nartova N, Lebedeva Y, Chukanov N (2005) Biraite-(Ce), Ce2Fe2+(CO3)(Si2O7), a new mineral from Siberia with a novel structure type. Eur J Mineral 17:715–721

    Google Scholar 

  • Kynicky J, Smith MP, Xu C (2012) Diversity of rare earth element deposits: the key example of China. Elements 8:361–367

    Google Scholar 

  • Lackey JS, Valley JW, Chen JH, Stockli DF (2008) dynamic magma systems, crustal recycling, and alteration in the central Sierra Nevada Batholith the oxygen isotope record. J Petrol 49:1397–1426

    Google Scholar 

  • Lagerblad B (1988) Evolution and tectonic history of the Bergslagen vulcano-plutonic complex, central Sweden. Geol Mijnb 67:165–176

    Google Scholar 

  • Lagerblad B, Gorbatschev R (1985) Hydrothermal alteration as a control of regional geochemistry and ore formation in the central Baltic Shield. Geol Rundsch 74:33–49

    Google Scholar 

  • Lahtinen R, Korja A, Nironen M (2005) Aleoproterozoic tectonic evolution. In: Lehtinen M, Nurmi PA, Rämö OT (eds) Precambrian geology of Finland—key to the evolution of the Fennoscandian Shield. (Developments in Precambrian geology 14. Elsevier, Amsterdam, pp 483–532

    Google Scholar 

  • Le Bas MJ, Spiro B, Yang X (1997) Oxygen, carbon and strontium isotope study of the carbonatitic dolomite host of the Bayan Obo Fe-Nb-REE deposit, Inner Mongolia, N China. Mineral Mag 61:531–541

    Google Scholar 

  • Le Bas MJ, Xueming Y, Taylor RN, Spiro B, Milton JA, Peishan Z (2007) New evidence from a calcite-dolomite carbonatite dyke for the magmatic origin of the massive Bayan Obo ore-bearing dolomite marble, Inner Mongolia, China. Mineral Petrol 90:223–248

    Google Scholar 

  • Liferovich RP, Mitchell RH (2006) Apatite-group minerals from nepheline syenite, Pilansberg alkaline complex, South Africa. Mineral Mag 70:463–484

    Google Scholar 

  • Ling MX, Liu YL, Williams IS, Teng FZ, Yang XY, Ding X, Wei GJ, Xie LH, Deng WF, Sun WD (2013) Formation of the world’s largest REE deposit through protracted fluxing of carbonatite by subduction–derived fluids. Scientific Reports 3, Article number: 1776 (www.nature.com)

  • Lipin BR, Mckay GA (1989) Geochemistry and mineralogy of rare earth minerals. Rev Miner 21:1–348

    Google Scholar 

  • Lu H–Z, Liu Y, Wang C, Xu Y, Li H (2003) Mineralization and fluid inclusion study of the Shizhuyuan W-Sn-Bi-Mo-F skarn deposit, Hunan province, China. Econ Geol 98:955–974

    Google Scholar 

  • Lundström I (2004) Depositional history, stratigraphy, ore types and alterations in Bergslagen. In: Andersson UB (ed) The Bastnäs-type REE-mineralisations in north-western Bergslagen, Sweden. Sver Geol Unders, Rapp medd 119:9–11

  • Lundström I, Allen RL, Persson P-O, Ripa M (1998) Stratigraphies and depositional ages of Svecofennian, Palaeoproterozoic metavolcanic rocks in E Svealand and Bergslagen, south central Sweden. GFF 120:315–320

    Google Scholar 

  • McCandless TE, Ruiz J, Campbell AR (1993) Rhenium behavior in molybdenite in hypogene and near-surface environments: implications for Re-Os geochronometry. Geochim Cosmonchim Acta 57:889–905

    Google Scholar 

  • McCrea JM (1950) On the isotopic chemistry of carbonates and a paleotemperature scale. J Chem Phys 18:849–857

    Google Scholar 

  • Mercolli I (1980) Fluor-Verteilung in Tremolit und Talk in den metamorphen Dolomiten des Campolungo (Tessin) und ihre phasepetrologisch Bedeutung. Schw Min Petr Mitt 60:31–44

    Google Scholar 

  • Mitchell RH (1986) Kimberlites; mineralogy, geochemistry, and petrology. Plenum Press, New York, 442 pp

    Google Scholar 

  • Miyawaki R, Shimazaki H, Yokoyama K, Matsubara S, Shigeok M (2010) A mineralogical study on specimens from Bayan Obo Nb-REE-Fe Deposit, Inner Mongolia, China. Paper presented at the sixth international rare earth development and application conference

  • Moore JN, Kerrick DM (1976) Equilibria in siliceous dolomites of the Alta aureole, Utah. Am J Sci 276:502–524

    Google Scholar 

  • Mosander CG (1843) On the new metals, lanthanum and didymium, which are associated with cerium; and on erbium and terbium, new metals associated with yttria. Phil Mag 23:241–254

    Google Scholar 

  • Mulrooney D, Rivers T (2005) Redistribution of the rare-earth elements among coexisting minerals in metamafic rocks across the epidote-out isograd: an example from the St. Anthony complex, northern Newfoundland, Canada. Can Min 43:263–294

    Google Scholar 

  • O’Neill JR, Shaw SE, Flood RH (1977) Oxygen and hydrogen isotope compositions as indicators of granite genesis in the New England Batholith, Australia. Contrib Mineral Petrol 62:313–328

    Google Scholar 

  • Öhlander B, Romer RL (1996) Zircon ages of granites occurring along the central Swedish gravity low. GFF 118:217–225

    Google Scholar 

  • Ohmoto H (1986) Stable isotope geochemistry of ore deposits. Rev Mineral 16:491–559

    Google Scholar 

  • Oreskes N, Einaudi NT (2006) Origin of rare earth element-enriched hematite breccias at the Olympic Dam Cu-U-Au-Ag deposit, Roxby Downs, South Australia. Econ Geol 85:1–28

    Google Scholar 

  • Pekov IV, Zubkova NV, Chukanov NV, Husdal TA, Zadov E, Pushcharovsky DY (2011) Fluorbritholite-(Y), (Y, Ca, Ln)5[(Si, P)O4]3 F, a new mineral of the britholite group. Neues Jb Miner Abh - J Mineral Geochem 188:191–197

    Google Scholar 

  • Perring CS, Pollard PJ, Dong G, Nunn AJ, Blake KL (2000) The Lightning Creek sill complex, Cloncurry District, northwest Queensland: a source of fluids for Fe oxide Cu-Au mineralization and sodic-calcic alteration. Econ Geol 95:1067–1089

    Google Scholar 

  • Pin C, Zalduegui JFS (1997) Sequential separation of light rare-earth elements, thorium and uranium by miniaturized extraction chromatography: Application to isotopic analyses of silicate rocks. Anal Chim Acta 339:79–89

    Google Scholar 

  • Porter TM (2010) Current understanding of iron oxide associated-alkali altered mineralized systems. In: Porter TM (ed), Hydrothermal iron oxide copper-gold & related deposits, a global perspective, vol. 3. PGC Publishing, Adelaide, pp 5–105

  • Ripa M (1994) The mineral chemistry of hydrothermally altered and metamorphosed wall-rocks at the Stollberg Fe-Pb-Zn-Mn(−Ag) deposit, Bergslagen, Sweden. Miner Deposita 29:180–188

    Google Scholar 

  • Roedder E (1984) Fluid inclusions. Mineral Soc America Rev Mineral 12:1–644

    Google Scholar 

  • Sahlström F (2014) Stable isotope systematics of skarn-hosted REE-silicate–magnetite mineralisations in central Bergslagen, Sweden. Department of Earth Sciences, Uppsala University

  • Sahlström F, Jonsson E, Högdahl K, Harris C (2014) Magnetite oxygen isotope constraints on the genesis of Bastnäs-type REE mineralisation in Bergslagen, Sweden. Abstract, 31st Nordic Geological Winter meeting, Lund, p. 60

  • Samson IM, Wood SA, Finucane K (2004) Fluid inclusion characteristics and genesis of the fluorite-parisite mineralization in the Snowbird Deposit, Montana. Econ Geol 99:1727–1744

    Google Scholar 

  • Schidlowski M, Eichmann R, Junge CE (1975) Precambrian sedimentary carbonates carbon and oxygen isotope geochemistry and applications for the terrestrial oxygen budget. Precambrian Res 2:1–69

    Google Scholar 

  • Selby D, Creaser RA (2001) Re-Os geochronology and systematics in molybdenite from the Endako porphyry molybdenum deposit, British Columbia, Canada. Econ Geol 96:197–204

    Google Scholar 

  • Selby D, Creaser RA (2004) Macroscale NTIMS and microscale LA-MC-ICP-MS Re-Os isotopic analysis of molybdenite: testing spatial restrictions for reliable Re-Os age determinations, and implications for the decoupling of Re and Os within molybdenite. Geochim Cosmochim Acta 68:3897–3908

    Google Scholar 

  • Selby D, Creaser RA, Feely M (2004) Accurate and precise Re-Os molybdenite dates from the Galway Granite, Ireland. Critical comment on “Disturbance of the Re-os chronometer of molybdenites from the late-Caledonian Galway Granite, Ireland, by hydrothermal fluid circulation”. Geochem J 38:291–294

    Google Scholar 

  • Skublov S, Drugova G (2003) Patterns of trace-element distribution in calcic amphiboles as a function of metamorphic grade. Can Min 41:283–392

    Google Scholar 

  • Slack JF (2012) Strata-bound Fe-Co-Cu-Au-Bi-Y-REE deposits of the Idaho Cobalt Belt: multistage hydrothermal mineralization in a magmatic-related iron oxide copper-gold system. Econ Geol 107:1089–1113

    Google Scholar 

  • Smith MP, Henderson P (2000) Preliminary fluid inclusion constraints on fluid evolution in the Bayan Obo Fe-REE-Nb deposit, inner Mongolia, China. Econ Geol 95:1371–1388

    Google Scholar 

  • Smith MP, Henderson P, Peishan Z (1999) Reaction relationships in the Bayan Obo Fe-REE-Nb deposit Inner Mongolia, China: implications for the relative stability of rare-earth element phosphates and fluorocarbonates. Contrib Mineral Petrol 134:294–310

    Google Scholar 

  • Smith MP, Henderson P, Campbell LS (2000) Fractionation of the REE during hydrothermal processes: constraints fronm the Bayan Obo Fe-REE-Nb deposit, Inner Mongolia, China. Geochim Cosmochim Acta 64:3141–3160

    Google Scholar 

  • Smith MP, Henderson P, Jeffries T (2002) The formation and alteration of allanite in skarn from the Beinn an Dubhaich granite aureole, Skye. Eur J Mineral 14:471–486

    Google Scholar 

  • Smith MP, Gleeson SA, Yardley BWD (2013) Hydrothermal fluid evolution and metal transport in the Kiruna District, Sweden: contrasting metal behaviour in aqueous and aqueous-carbonic brines. Geochim Cosmochim Acta 102:89–112

    Google Scholar 

  • Stålhös G (1991) Bekrivning till bergrundskartorna Östhammar NV, NO, SV, SO. Sver Geol Unders Af 161, 166, 169 & 172:1–249 (in Swedish)

  • Stein HJ, Markey RJ, Morgan JW, Hannah JL, Scherstén A (2001) The remarkable Re-Os chronometer in molybdenite: how and why it works. Terra Nova 13:479–486

    Google Scholar 

  • Stephens MB, Ripa M, Lundström I, Persson L, Bergman T, Ahl M, Wahlgren C-H, Persson P-O, Wickström L (2009) Synthesis of bedrock geology in the Bergslagen region, Fennoscandian Shield, south-central Sweden. Sver Geol Unders Ba 58:1–259

    Google Scholar 

  • Storkey AC, Hermann J, Hand M, Buick IS (2005) Using in situ trace element determinations to monitor partial-melting processes in metabasites. J Petr 46:1283–1308

    Google Scholar 

  • Sun J, Zhu X, Chen Y, Fang N (2013) Iron isotopic constraints on the genesis of Bayan Obo ore deposit, Inner Mongolia, China. Precambrian Res 235:88–106

    Google Scholar 

  • Sundblad K, Ahl M, Schöberg H (1993) Age and geochemistry of granites associated with Mo-mineralizations in western Bergslagen. Precambrian Res 64:319–335

    Google Scholar 

  • Sundblad K, Stein HJ, Markey R, Morgan J, Bergman T (1996) Re-Os age and geochemistry of highly evolved granites associated with Mo and W ore deposits in Bergslagen, Sweden. Paper presented at the seventh international symposium on rapakivi granites and related rocks, 73–74.

  • Suzuki K (2004) Reply to “Accurate and precise Re-Os molybdenite dates from the Galway Granite, Ireland” by D. Selby et al.: Critical comment on “Disturbance of the Re-Os chronometer of molybdenites from the late-Caledonian Galway Granite, Ireland, by hydrothermal fluid circulation”. Geochem J 38:295–298

    Google Scholar 

  • Suzuki K, Kagi H, Nara M, Takano B, Nozaki Y (2000) Experimental alteration of molybdenite: evaluation of the Re-Os system, infrared spectroscopic profile and polytype. Geochim Cosmochim Acta 64:223–232

    Google Scholar 

  • Suzuki K, Feely M, O’Reilly C (2001) Disturbance of the Re-Os chronometer of molybdenites from the late-Caledonian Galway Granite, Ireland, by hydrothermal fluid circulation. Geochem J 35:29–35

    Google Scholar 

  • Taylor HP, Frechen J, Degens ET (1967) Oxygen and carbon isotopic studies of carbonatites from the Laacher See district, West Germany and the Alnö district, Sweden. Geochim Cosmochim Acta 31:407–430

    Google Scholar 

  • Tegengren FR (1924) Sveriges ädlare malmer och bergverk. Sver Geol Unders Ca 17:1–106 (in Swedish)

    Google Scholar 

  • Trägårdh J (1988) Cordierite-mica-quartz schists in a Proterozoic volcanic iron ore-bearing terrain, Riddarhyttan area, Bergslagen, Sweden. Geol Mijnb 67:397–409

    Google Scholar 

  • Trägårdh J (1991) Metamorphism of magnesium-altered felsic volcanic rocks from Bergslagen, central Sweden. A transition from Mg-chlorite- to cordierite-rich rocks. Ore Geol Rev 6:485–497

    Google Scholar 

  • Valley JW (1986) Stable isotope geochemistry of metamorphic rocks. Mineral Soc Amer Rev Mineral 16:445–489

    Google Scholar 

  • Valley JW, Petersen EU, Essene EJ, Bowman JR (1982) Fluorphlogopite and fluortremolite in Adirondack marbles and calculated C-O-H-F fluid compositions. Am Min 67:545–557

    Google Scholar 

  • Valley JW, Lackey JS, Cavosie AJ, Clechenko CC, Spicuzza MJ, Basei MAS, Bindeman IN, Ferreira VP, Sial AN, King EM, Peck WH, Sinha AK, Wei CS (2005) 44 billion years of crustal maturation oxygen isotope ratios of magmatic zircon. Contrib Mineral Petrol 150:561–580

    Google Scholar 

  • Van den Kerkhof A, Thiéry R (2001) Carbonic inclusions. Lithos 55:49–68

    Google Scholar 

  • Veizer J, Plumb KA, Clayton RN, Hinton RW, Grotzinger JP (1992) Geochemistry of Precambrian carbonates. V. Late Paleoproterozoic seawater. Geochim Cosmochim Acta 56:2487–2501

    Google Scholar 

  • Wagner T, Jonsson E, Boyce AJ (2005) Metamorphic ore remobilization in the Hällefors district, Bergslagen, Sweden: constraints from mineralogical and small-scale sulphur isotope studies. Miner Deposita 40:100–114

    Google Scholar 

  • Williams PJ (2010) Classifying IOCG deposits. Geol Ass Canada, Short Course Notes 20:13–21

    Google Scholar 

  • Williams PJ, Kendrick MA, Xavier RP (2010) Sources of ore fluid components in IOCG deposits. In: Porter TM (ed), Hydrothermal iron oxide copper-gold & related deposits, a global perspective, vol. 3. PGC Publishing, Adelaide, pp 107–116

  • Williams-Jones AE, Wood SA (1992) A preliminary petrogenetic grid for REE fluorocarbonates and associated minerals. Geochim Cosmochim Acta 56:725–738

    Google Scholar 

  • Williams-Jones AE, Samson IM, Olivo GR (2000) The genesis of hydrothermal fluorite-REE deposits in the Gallinas Mountains, New Mexico. Econ Geol 95:327–342

    Google Scholar 

  • Williams-Jones AE, Migdisov AA, Samson IM (2012) Hydrothermal mobilisation of the rare earth elements—a tale of “Ceria” and “Yttria”. Elements 8:355–360

    Google Scholar 

  • Yang KF, Fan HR, Santosh M, Hu FF, Wang KY (2011) Mesoproterozoic carbonatitic magmatism in the Bayan Obo deposit, Inner Mongolia, north China: constraints for the mechanism of super accumulation of rare earth elements. Ore Geol Rev 40:122–131

    Google Scholar 

  • Yardley BWD (2005) Metal concentrations in crustal fluids and their relationship to ore formation. Econ Geol 100:613–632

    Google Scholar 

  • Zhou LG, Xia QX, Zheng YF, Chen RX (2011) Multistage growth of garnet in ultrahigh-pressure eclogite during continental collision in the Dabie orogeny: constrained by trace elements and U-Pb ages. Lithos 127:101–127

    Google Scholar 

  • Zuber JA, Öhlander B (1991) Gravimetrical and geochemical studies of 18 Ga old granites in the Strängnäs-Enköping area, south central Sweden. Geol Fören Förh 113:309–318

    Google Scholar 

Download references

Acknowledgements

We wish to thank the Geological Survey of Norway for granting access to their ICP-MS instrument. This research project has benefitted from financial contribution from the Swedish Research Council (grant no. 621-2003-3572). Comments and constructive suggestions from the editors and reviewers of this journal are highly appreciated by the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Holtstam.

Additional information

Editorial handling: D. Huston and B. Lehmann

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holtstam, D., Andersson, U.B., Broman, C. et al. Origin of REE mineralization in the Bastnäs-type Fe-REE-(Cu-Mo-Bi-Au) deposits, Bergslagen, Sweden. Miner Deposita 49, 933–966 (2014). https://doi.org/10.1007/s00126-014-0553-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-014-0553-0

Keywords

Navigation