Skip to main content
Log in

Re–Os molybdenite ages and zircon Hf isotopes of the Gangjiang porphyry Cu–Mo deposit in the Tibetan Orogen

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

The Miocene porphyry Cu–(Mo) deposits in the Gangdese orogenic belt in southern Tibet were formed in a post-subduction collisional setting. They are closely related to the Miocene adakite-like porphyries which were probably derived from a thickened basaltic lower crust. Furthermore, mantle components have been considered to have played a crucial role in formation of these porphyry deposits (Hou et al. Ore Geol Rev 36: 25–51, 2009; Miner Deposita doi:10.1007/s00126-012-0415-6, 2012). In this study, we present zircon Hf isotopes and molybdenite Re–Os ages on the newly discovered Gangjiang porphyry Cu–Mo deposit in southern Tibet to constrain the magma source of the intrusions and the timing of mineralization. The Gangjiang porphyry Cu–Mo deposit is located in the Nimu ore field in the central Gangdese porphyry deposits belt, southern Tibet. The copper and molybdenum mineralization occur mainly as disseminations and veins in the overlapped part of the potassic and phyllic alteration zones, and are predominantly hosted in the quartz monzonite stock and in contact with the rhyodacite porphyry stock. SIMS zircon U–Pb dating of the pre-mineral quartz monzonite stock and late intra-mineral rhyodacite porphyry yielded ages of 14.73 ± 0.13 Ma (2σ) and 12.01 ± 0.29 Ma (2σ), respectively. These results indicate that the magmatism could have lasted as long as about 2.7 Ma for the Gangjiang deposit. The newly obtained Re–Os model ages vary from 12.51 ± 0.19 Ma (2σ) to 12.85 ± 0.18 Ma (2σ) for four molybdenite samples. These Re–Os ages are roughly coincident with the rhyodacite porphyry U–Pb zircon age, and indicate a relatively short-lived episode of ore deposition (ca. 0.3 Ma). In situ Hf isotopic analyses on zircons by using LA-MC-ICP-MS indicate that the ε Hf(t) values of zircons from a quartz monzonite sample vary from +2.25 to +4.57 with an average of +3.33, while zircons from a rhyodacite porphyry sample vary from +5.53 to +7.81 with an average of +6.64. The Hf data indicate that mantle components could be partly involved in the deposit formation, and that mantle contributions might have increased over time from ca. 14.7 to 12.0 Ma. Combined with previous works, it is proposed that the Gangjiang deposit could have resulted from the convective thinning of the lithospheric root, and the input of upper mantle components into the magma could have played a key role in the formation of the porphyry deposits in the Miocene Gangdese porphyry copper belt in the Tibetan Orogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Allègre CJ, Courtillot V, Tapponnier P, Hirn A, Mattauer M, Coulon C, Jaeger JJ, Achache J, Scharer U, Marcoux J, Burg JP, Girardeau J, Armijo R, Gariepy C, Gopel C, Li TD, Xiao XC, Chang CF, Li GQ, Lin BY, Teng JW, Wang NW, Chen GM, Han TL, Wang XB, Den WM, Sheng HB, Cao YG, Zhou J, Qiu HR, Bao PS, Wang SC, Wang BX, Zhou YX, Xu RH (1984) Structure and evolution of the Himalaya-Tibet orogenic belt. Nature 307:17–22

    Article  Google Scholar 

  • Arribas A, Hedenquist JW, Itaya T, Okada T, Concepcion RA, Garcia JS (1995) Contemporaneous formation of adjacent porphyry and epithermal Cu-Au deposits over 300 ka in northern Luzon, Philippines. Geology 23:337–340

    Article  Google Scholar 

  • Barra F, Ruiz J, Valencia VA, Qchoa-Landín L, Chesley JT, Zurcher L (2005) Laramide porphyry Cu-Mo mineralization in Northern Mexico: age constrains from Re-Os geochrononology in molybdenite. Econ Geol 100:1605–1616

    Article  Google Scholar 

  • Blichert-Toft J, Albarede F (1997) The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth Planet Sci Lett 148:243–258

    Article  Google Scholar 

  • Burg JP, Chen GM (1984) Tectonics and structural zonation of Southern Tibet, China. Nature 311:219–223

    Article  Google Scholar 

  • Cathles LM, Erendi A, Barrie T (1997) How long can a hydrothermal system be sustained by a single intrusive event? Econ Geol 92:766–771

    Article  Google Scholar 

  • Chauvel C, Lewin E, Carpentier M, Arndt NT, Marini JC (2007) Role of recycled oceanic basalt and sediment in generating the Hf-Nd mantle array. Nat Geosci 1:64–67

    Article  Google Scholar 

  • Chu MF, Chung SL, Song B, Liu D, O'Reilly SY, Pearson NJ, Ji J, Wen DJ (2006) Zircon U-Pb and Hf isotope constraints on the Mesozoic tectonics and crustal evolution of southern Tibet. Geology 34:745–748

    Article  Google Scholar 

  • Chung SL, Liu DY, Ji JQ, Chu MF, Lee HY, Wen DJ, Lo CH, Lee TY, Qian Q, Zhang Q (2003) Adakites from continental collision zones: melting of thickened lower crust beneath southern Tibet. Geology 31:1021–1024

    Article  Google Scholar 

  • Chung SL, Chu MF, Zhang YQ, Xie YW, Lo CH, Lee TY, Lan CY, Li XH, Zhang Q, Wang YZ (2005) Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism. Earth Sci Rev 68:173–196

    Article  Google Scholar 

  • Chung SL, Chu MF, Ji JQ, O'Reilly SY, Pearson NJ, Liu DY, Lee TY, Lo CH (2009) The nature and timing of crustal thickening in Southern Tibet: geochemical and zircon Hf isotopic constraints from postcollisional adakites. Tectonophysics 477:36–48

    Article  Google Scholar 

  • Coleman M, Hodges K (1995) Evidence for Tibetan plateau uplift before 14 Myr ago from a new minimum age for east–west extension. Nature 374:49–52

    Article  Google Scholar 

  • Cooke DR, Hollings P, Walshe JL (2005) Giant porphyry deposits: characteristics, distribution, and tectonic controls. Econ Geol 100:801–818

    Article  Google Scholar 

  • Corbett GJ, Leach TM (1998) Southwest Pacific Rim gold-copper systems: structure, alteration, and mineralization. Soc Econ Geol Sp Pub 6:1–237

    Google Scholar 

  • Coulon C, Maluski H, Bollinger C, Wang S (1986) Mesozoic and Cenozoic volcanic rocks from central and southern Tibet: 39Ar–40Ar dating, petrological characteristics and geodynamical significance. Earth Planet Sci Lett 79:281–302

    Article  Google Scholar 

  • Defant MJ, Drummond MS (1990) Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 347:662–665

    Article  Google Scholar 

  • Ding L, Kapp P, Zhong DL, Deng WM (2003) Cenozoic volcanism in Tibet: evidence for a transition from oceanic to continental subduction. J Petrol 44:1833–1865

    Article  Google Scholar 

  • Dong GC, Mo XX, Zhao ZD, Guo TY, Wang LL, Chen T (2005) Geochronologic constraints on the magmatic underplating of the Gangdise belt in the India-Eurasia collision: evidence of SHRIMP II zircon U-Pb dating. Acta Geol Sin-Engl 79:787–794

    Article  Google Scholar 

  • Du AD, He HY, Yin WN, Zhou XQ, Sun YL, Sun DZ, Chen SZ, Qu WJ (1994) The study on the analytical methods of Re-Os age for molybdenites. Acta Geol Sinica 68:339–347 (in Chinese with English abstract)

    Google Scholar 

  • Du AD, Wu SQ, Sun DZ, Wang SX, Qu WQ, Markey R, Stain H, Morgan J, Malinovskiy D (2004) Preparation and certification of Re-Os dating reference materials: molybdenites HLP and JDC. Geostand Geoanal Res 28:41–52

    Article  Google Scholar 

  • Durr SB (1996) Provenance of Xigaze fore-arc basin clastic rocks (Cretaceous, south Tibet). Geol Soc Am Bull 108:669–684

    Article  Google Scholar 

  • Gaetani M, Garzanti E (1991) Multicyclic history of the northern India continental margin (northwestern Himalaya). AAPG Bull 75:1427–1446

    Google Scholar 

  • Gao YF, Hou ZQ, Wei RH (2003) Neogene porphyries from Gangdese: petrological, geochemical characteristics and geodynamic significances. Acta Petrol Sinica 19:418–428 (in Chinese with English abstract)

    Google Scholar 

  • Gao YF, Hou ZQ, Kamber BS, Wei RH, Meng XJ, Zhao RS (2007) Adakite-like porphyries from the southern Tibetan continental collision zones: evidence for slab melt metasomatism. Contrib Mineral Petrol 153:105–120

    Article  Google Scholar 

  • Gao YF, Yang ZS, Santosh M, Hou ZQ, Wei RH, Tian SH (2010) Adakitic rocks from slab melt-modified mantle sources in the continental collision zone of southern Tibet. Lithos 119:651–663

    Article  Google Scholar 

  • GGG (2009) Rock sample results at west Guqing area indicate fourth porphyry copper centre at Gangjiang licence area. www.bullabullinggold.com/sites/www.bullabullinggold.com/files/private/West%20Guqing%20Road%20Cut%20Results%2020%20May%202009.pdf

  • GGG (2008a) Copper oxide recovery at Gangjiang area. www.bullabullinggold.com/sites/www.bullabullinggold.com/files/private/Release_Gangjiang_Cu%20Oxide%20Results%20final.pdf

  • GGG (2008b) Hole GJ20 at Gelong-East Nading project extends mineralisation further to the west. www.bullabullinggold.com/sites/www.bullabullinggold.com/files/private/Release_Nimu_GJ20%202008-11-11.pdf

  • Griffin W, Wang X, Jackson S, Pearson N, O'Reilly SY, Xu X, Zhou X (2002) Zircon chemistry and magma mixing, SE China: in-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos 61:237–269

    Article  Google Scholar 

  • Griffin W, Pearson N, Belousova E, Saeed A (2006) Comment: Hf-isotope heterogeneity in zircon 91500. Chem Geol 233:358–363

    Article  Google Scholar 

  • Guo ZF, Wilson M, Liu JQ (2007) Post-collisional adakites in south Tibet: products of partial melting of subduction-modified lower crust. Lithos 96:205–224

    Article  Google Scholar 

  • Guynn JH, Kapp P, Pullen A, Heizier M, Gehrels G, Ding L (2006) Tibetan basement rocks near Amdo reveal “missing” Mesozoic tectonism along the Bangong suture, central Tibet. Geology 34:505–508

    Article  Google Scholar 

  • Harris NBW, Xu RH, Lewis CL, Hawkesworth CJ, Zhang YQ (1988) Isotope geochemistry of the 1985 Tibet geotraverse, Lhasa to Golmud. Phil Trans R Soc of London 327:263–285

    Article  Google Scholar 

  • Harrison TM, Copeland P, Kidd WSF, Yin A (1992) Raising Tibet. Science 255:1663–1670

    Article  Google Scholar 

  • Hart SR (1984) A large-scale isotope anomaly in the Southern Hemisphere mantle. Nature 309:753–757

    Article  Google Scholar 

  • Hawkesworth C, Kemp A (2006) Using hafnium and oxygen isotopes in zircons to unravel the record of crustal evolution. Chem Geol 226:144–162

    Article  Google Scholar 

  • Hou ZQ, Gao YF, Qu XM, Rui ZY, Mo XX (2004) Origin of adakitic intrusives generated during mid-Miocene east–west extension in southern Tibet. Earth Planet Sci Lett 220:139–155

    Article  Google Scholar 

  • Hou ZQ, Yang ZM, Qu XM, Meng XJ, Li ZQ, Beaudoin G, Rui ZY, Gao YF, Zaw K (2009) The Miocene Gangdese porphyry copper belt generated during post-collisional extension in the Tibetan Orogen. Ore Geol Rev 36:25–51

    Article  Google Scholar 

  • Hou ZQ, Zheng YC, Yang ZM, Rui ZY, Zhao ZD, Jiang SH, Qu XM, Sun QZ (2012) Contribution of mantle components within juvenile lower-crust to collisional zone porphyry Cu systems in Tibet. Miner Deposita. doi:10.1007/s00126-012-0415-6

  • Ji WQ, Wu FY, Chung SL, Li JX, Liu CZ (2009) Zircon U-Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet. Chem Geol 262:229–245

    Article  Google Scholar 

  • Kind R, Ni J, Zhao WJ, Wu JX, Yuan XH, Zhao LS, Sandvol E, Reese C, Nabelek J, Hearn T (1996) Evidence from earthquake data for a partially molten crustal layer in southern Tibet. Science 274:1692–1694

    Article  Google Scholar 

  • Kinny PD, Maas R (2003) Lu-Hf and Sm-Nd isotope systems in zircon. Rev Mineral Geochem 53:327–341

    Article  Google Scholar 

  • Leng CB, Zhang XC, Zhou WD (2010) A primary study of the geological characteristics and zircon U-Pb age of the Gangjiang porphyry copper-molybdenum deposit in Nimu. Tibet Earth Science Frontiers 17:185–197 (in Chinese with English abstract)

    Google Scholar 

  • Li GM, Rui ZY (2004) Petrogenetic and metallogenetic ages for the porphyry copper deposits in the Gangdese metallogenic belt in southern Tibet. Geotecton Metallog 28:165–170 (in Chinese with English abstract)

    Google Scholar 

  • Li JX, Qin KZ, Li GM, Yang LK (2007) K-Ar and 40Ar/39Ar age dating of Nimu porphyry copper orefield in central Gangdese: constrains on magmatic-hydrothermal evolution and metallogenetic tectonic setting. Acta Petrol Sinica 23:953–966

    Google Scholar 

  • Li JX, Qin KZ, Li GM, Xiao B, Chen L, Zhao JX (2011) Post-collisional ore-bearing adakitic porphyries from Gangdese porphyry copper belt, southern Tibet: melting of thickened juvenile arc lower crust. Lithos 126:265–277

    Article  Google Scholar 

  • Maheo G, Guillot S, Blichert-Toft J, Rolland Y, Pecher A (2002) A slab breakoff model for the Neogene thermal evolution of South Karakorum and South Tibet. Earth Planet Sci Lett 195:45–58

    Article  Google Scholar 

  • Mahoney JJ, Frei R, Tejada MLG, Mo XX, Leat PT, Nägler TF (1998) Tracing the Indian Ocean mantle domain through time: isotopic results from old West Indian, East Tethyan, and South Pacific seafloor. J Petrol 39:1285–1306

    Google Scholar 

  • Marsh TM, Einaudi MT, McWilliams M (1997) 40 Ar/39 Ar geochronology of Cu-Au and Au-Ag mineralization in the Potrerillos District, Chile. Econ Geol 92:784

    Article  Google Scholar 

  • Martin H (1999) Adakitic magmas: modern analogues of Archaean granitoids. Lithos 46:411–429

    Article  Google Scholar 

  • Miller C, Schuster R, Klotzli U, Frank W, Purtscheller F (1999) Post-collisional potassic and ultrapotassic magmatism in SW Tibet: geochemical and Sr-Nd-Pb-O isotopic constraints for mantle source characteristics and petrogenesis. J Petrol 40:1399–1424

    Article  Google Scholar 

  • Mo XX, Hou ZQ, Niu YL, Dong GC, Qu XM, Zhao ZD, Yang ZM (2007) Mantle contributions to crustal thickening during continental collision: evidence from Cenozoic igneous rocks in southern Tibet. Lithos 96:225–242

    Article  Google Scholar 

  • Mo XX, Niu YL, Dong GC, Zhao ZD, Hou ZQ, Zhou S, Ke S (2008) Contribution of syncollisional felsic magmatism to continental crust growth: a case study of the Paleogene Linzizong volcanic Succession in southern Tibet. Chem Geol 250:49–67

    Article  Google Scholar 

  • Mo XX, Dong GC, Zhao ZD, Zhu DC, Zhou S, Niu YL (2009) Mantle Input to the Crust in Southern Gangdese, Tibet, during the Cenozoic: zircon Hf isotopic evidence. J Earth Sci-China 20:241–249

    Article  Google Scholar 

  • Nowell G, Kempton P, Noble S, Fitton J, Saunders A, Mahoney J, Taylor R (1998) High precision Hf isotope measurements of MORB and OIB by thermal ionisation mass spectrometry: insights into the depleted mantle. Chem Geol 149:211–233

    Article  Google Scholar 

  • Pearce JA, Mei HJ (1988) Volcanic rocks of the 1985 Tibet geotraverse: Lhasa to Golmud. Phil Trans R Soc of London 327:169–201

    Article  Google Scholar 

  • Qi L, Hu J, Gregoire DC (2000) Determination of trace elements in granites by inductively coupled plasma mass spectrometry. Talanta 51:507–513

    Article  Google Scholar 

  • Qu XM, Hou ZQ, Li YG (2004) Melt components derived from a subducted slab in late orogenic ore-bearing porphyries in the Gangdese copper belt, southern Tibetan plateau. Lithos 74:131–148

    Article  Google Scholar 

  • Qu XM, Hou ZQ, Zaw K, Li YG (2007) Characteristics and genesis of Gangdese porphyry copper deposits in the southern Tibetan Plateau: preliminary geochemical and geochronological results. Ore Geol Rev 31:205–223

    Article  Google Scholar 

  • Qu XM, Hou ZQ, Zaw K, Mo XX, Xu WY, Xin HB (2009) A large-scale copper ore-forming event accompanying rapid uplift of the southern Tibetan Plateau: evidence from zircon SHRIMP U-Pb dating and LA ICP-MS analysis. Ore Geol Rev 36:52–64

    Article  Google Scholar 

  • Richards JP (2003) Tectono-magmatic precursors for porphyry Cu-(Mo) deposit formation. Econ Geol 98:1515

    Article  Google Scholar 

  • Richards JP (2009) Postsubduction porphyry Cu-Au and epithermal Au deposit: products of remelting of subduction-modified lithosphere. Geology 37:247–250

    Article  Google Scholar 

  • Richards JP (2011) High Sr/Y arc magmas and porphyry Cu ± Mo ± Au deposits: just add water. Econ Geol 106:1075–1081

    Article  Google Scholar 

  • Rui ZY, Hou ZQ, Qu XM, Zhang LS, Wang LS, Liu YL (2003) Metallogenic epoch of Gangdese porphyry copper belt and uplift of Qinghai-Tibetan Plateau. Mineral Deposit 22:224–232 (in Chinese with English abstract)

    Google Scholar 

  • Rui ZY, Li GM, Zhang LS, Wang LS (2004) The response of porphyry copper deposits to important geological events in Xizang (Tibet). Earth Sci Front 11:145–152 (in Chinese with English abstract)

    Google Scholar 

  • Scherer E, Munker C, Mezger K (2001) Calibration of the lutetium-hafnium clock. Science 293:683–687

    Article  Google Scholar 

  • Schütte P, Chiaradia M, Barra F, Villagómez D, Beate B (2012) Metallogenic features of Miocene porphyry Cu and porphyry-related mineral deposits in Ecuador revealed by Re-Os, 40Ar/39Ar, and U-Pb geochronology. Miner Deposita 47:383–410

    Article  Google Scholar 

  • Sillitoe RH (1972) A plate tectonic model for the origin of porphyry copper deposits. Econ Geol 67:184–197

    Article  Google Scholar 

  • Sillitoe RH (2010) Porphyry copper systems. Econ Geol 105:3–41

    Article  Google Scholar 

  • Sillitoe RH, Mortensen JK (2010) Longevity of porphyry copper formation at Quellaveco, Peru. Econ Geol 105:1157–1162

    Article  Google Scholar 

  • Smoliar MI, Walker RJ, Morgan JW (1996) Re-Os ages of group IIA, IIIA, IVA, and IVB iron meteorites. Science 271:1099–1102

    Article  Google Scholar 

  • Stein HJ, Markey RJ, Morgan JW, Du A, Sun Y (1997) Highly precise and accurate Re-Os ages for molybdenite from the East Qinling molybdenum belt, Shaanxi Province, China. Econ Geol 92:827–835

    Article  Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in the ocean basins. Geol Soc London Sp Pub 42:313–345

    Article  Google Scholar 

  • Sun WD, Zhang H, Ling MX, Ding X, Chung SL, Zhou JB, Yang XY, Fan WM (2011) The genetic association of adakites and Cu-Au ore deposits. Int Geol Rev 53:691–703

    Article  Google Scholar 

  • Turner S, Hawkesworth C, Liu JQ, Rogers N, Kelley S, Vancalsteren P (1993) Timing of Tibetan uplift constrained by analysis of volcanic rocks. Nature 364:50–54

    Article  Google Scholar 

  • Turner S, Arnaud N, Liu J, Rogers N, Hawkesworth C, Harris N, Kelley S, VanCalsteren P, Deng W (1996) Post-collision, shoshonitic volcanism on the Tibetan plateau: implications for convective thinning of the lithosphere and the source of ocean island basalts. J Petrol 37:45–71

    Article  Google Scholar 

  • Ulrich T, Günther D, Heinrich CA (2002) The evolution of a porphyry Cu-Au deposit, based on LA-ICP-MS analysis of fluid inclusions: Bajo de la Alumbrera. Argentina: Econ Geol 96:1743–1774

    Article  Google Scholar 

  • Vervoort JD, Blichert-Toft J (1999) Evolution of the depleted mantle: Hf isotope evidence from juvenile rocks through time. Geochim Cosmochim Acta 63:533–556

    Article  Google Scholar 

  • Wang XC, Yan ZG, Zhou WD, Jia XK, Li ZH, Wen J, Xu DZ, Yuan JF (2002) Preliminary study on geological features of porphyry type copper deposits in the northwestern Nimu, middle section of Gangdese belt. Tibet Geol and Prospect 38:5–8 (in Chinese with English abstract)

    Google Scholar 

  • Wen DR, Chung SL, Song B, Iizuka Y, Yang HJ, Ji JQ, Liu DY, Gallet S (2008) Late Cretaceous Gangdese intrusions of adakitic geochemical characteristics, SE Tibet: petrogenesis and tectonic implications. Lithos 105:1–11

    Article  Google Scholar 

  • Williams H, Turner S, Kelley S, Harris N (2001) Age and composition of dikes in Southern Tibet: new constraints on the timing of east–west extension and its relationship to postcollisional volcanism. Geology 29:339–343

    Article  Google Scholar 

  • Williams HM, Turner SP, Pearce JA, Kelley SP, Harris NBW (2004) Nature of the source regions for post-collisional, potassic magmatism in southern and northern Tibet from geochemical variations and inverse trace element modelling. J Petrol 45:555–607

    Article  Google Scholar 

  • Woodhead JD, Hergt JM (2005) A preliminary appraisal of seven natural zircon reference materials for in situ Hf isotope determination. Geostand Geoanal Res 29:183–195

    Article  Google Scholar 

  • Woodhead J, Hergt J, Davidson J, Eggins S (2001) Hafnium isotope evidence for ‘conservative’ element mobility during subduction zone processes. Earth Planet Sci Lett 192:331–346

    Article  Google Scholar 

  • Wu FY, Yang YH, Xie LW, Yang JH, Xu P (2006) Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology. Chem Geol 234:105–126

    Article  Google Scholar 

  • Yang JH, Wu FY, Wilde SA, Xie LW, Yang YH, Liu XM (2007) Tracing magma mixing in granite genesis: in situ U-Pb dating and Hf-isotope analysis of zircons. Contrib Mineral Petrol 153:177–190

    Article  Google Scholar 

  • Yang ZS, Hou ZQ, Meng XJ, Liu YC, Fei HC, Tian SH, Li ZQ, Gao W (2009) Post-collisional Sb and Au mineralization related to the South Tibetan detachment system, Himalayan orogen. Ore Geol Rev 36:194–212

    Article  Google Scholar 

  • Yin A, Harrison TM (2000) Geologic evolution of the Himalyan-Tibetan Orogen. Annual Rev Earth Planet Sci 28:211–280

    Article  Google Scholar 

  • Yin A, Harrison TM, Ryerson FJ, Chen WJ, Kidd WSF, Copeland P (1994) Tertiary structural evolution of the Gangdese thrust system, southeatern Tibet. J Geophys Res 99:18175–18201

    Article  Google Scholar 

  • Zhang LC, Xiao WJ, Qin KZ, Zhang Q (2006) The adakite connection of the Tuwu-Yandong copper porphyry belt, eastern Tianshan, NW China: trace element and Sr-Nd-Pb isotope geochemistry. Miner Deposita 41:188–200

    Article  Google Scholar 

  • Zheng YY, Gao SB, Cheng LJ, Li GL, Feng NP, Fan ZH, Zhang HP, Guo JC, Zhang GY (2004) Finding and significances of Chongjiang porphyry copper (molybdenum, aurum) deposit. Tibet Earth Sci-J of China Univ of Geosci 29:333–339 (in Chinese with English abstract)

    Google Scholar 

  • Zhou WD, Zhang QS (2010) A preliminary study of geological features for the Nimu Gangjiang porphyry Cu-Mo deposit. Acta Geol Sichuan 30:416–419 (in Chinese with English abstract)

    Google Scholar 

  • Zhu DC, Pan GT, Chung SL, Liao ZL, Wang LQ, Li GM (2008) SHRIMP zircon age and geochemical constraints on the origin of Lower Jurassic volcanic rocks from the Yeba Formation, Southern Gangdese, South Tibet. Int Geol Rev 50:442–471

    Google Scholar 

  • Zinder A, Hart SR (1986) Chemical geodynamics. Annu Rev Earth Pl Sci 14:493–571

    Article  Google Scholar 

Download references

Acknowledgments

This study was jointly supported by grants from the Natural Science Foundation of China (41003023 and 40873039), and the Special Fund of the State Key Laboratory of Ore Deposit Geochemistry. Without the practical assistance and cooperation of a number of individuals and organizations, the research described in this paper could not have been completed. In particular, thanks are due to Jinhui Yang and Yueheng Yang of the IGGCAS for analyzing Hf isotopes by using LA-ICP-MS, Jianyong Cui of the Beijing Research Institute of Uranium Geology for analyzing Nd–Sr–Pb isotopes by using TIMS, Shaosong Peng of the SKLODG for analyzing major elements by using conventional wet chemical methods, Jing Hu of the SKLODG for analyzing trace elements by using ICP-MS. Many thanks are also due to Ciceron Jun Angeles, Romeo S. Aquino, Jeffrey Malaihollo, Dong Lan, Ruyi Zhao, and Shuhong Wang for their help and fruitful discussion during field trip and to Wei-Terry Chen for his helpful suggestions and language improvement on early draft of this manuscript. This manuscript also benefited greatly from strict reviews by Jeremy Richards and Fernando Barra. The Editor-in-Chief Bernd Lehmann is also appreciated for his helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing-Chun Zhang.

Additional information

Editorial handling: F. Barra

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leng, CB., Zhang, XC., Zhong, H. et al. Re–Os molybdenite ages and zircon Hf isotopes of the Gangjiang porphyry Cu–Mo deposit in the Tibetan Orogen. Miner Deposita 48, 585–602 (2013). https://doi.org/10.1007/s00126-012-0448-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-012-0448-x

Keywords

Navigation