Skip to main content
Log in

Impact of the D genome and quantitative trait loci on quantitative traits in a spring durum by spring bread wheat cross

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

The impact of the D genome and QTL in the A and B genomes on agronomic performance of hexaploid wheat and tetraploid durum was determined using novel recombinant inbred line populations derived from interploid crosses.

Abstract

Genetic differences between common hexaploid (6X) bread wheat (Triticum aestivum, 2n = 6x = 42, genome, AABBDD) and tetraploid (4X) durum wheat (T. turgidum subsp. durum, 2n = 4x = 28, genome, AABB) may exist due to effects of the D genome and allelic differences at loci in the A and B genomes. Previous work allowed identification of a 6X by 4X cross combination that resulted in a large number of fertile recombinant progeny at both ploidy levels. In this study, interspecific recombinant inbred line populations at both 4X and 6X ploidy with 88 and 117 individuals, respectively, were developed from a cross between Choteau spring wheat (6X) and Mountrail durum wheat (4X). The presence of the D genome in the 6X population resulted in increased yield, tiller number, kernel weight, and kernel size, as well as a decrease in stem solidness, test weight and seed per spike. Similar results were found with a second RIL population containing 152 lines from 18 additional 6X by 4X crosses. Several QTL for agronomic and quality traits were identified in both the 4X and 6X populations. Although negatively impacted by the lack of the D genome, kernel weight in Mountrail (4X) was higher than Choteau (6X) due to positive alleles from Mountrail on chromosomes 3B and 7A. These and other favorable alleles may be useful for introgression between ploidy levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bai D, Knott DR (1992) Suppression of rust resistance in bread wheat (Triticum aestivum L.) by D-genome chromosomes. Genome 35(2):276–282. doi:10.1139/g92-043

    Article  Google Scholar 

  • Blake NK, Lanning SP, Martin JM, Doyle M, Sherman JD, Naruoka Y, Talbert LE (2009) Effect of variation for major growth habit genes on maturity and yield in five spring wheat populations. Crop Sci 49(4):1211–1220. doi:10.2135/cropsci2008.08.0505

    Article  CAS  Google Scholar 

  • Blechl A, Lin J, Nguyen S, Chan R, Anderson OD, Dupont FM (2007) Transgenic wheats with elevated levels of Dx5 and/or Dy10 high-molecular-weight glutenin subunits yield doughs with increased mixing strength and tolerance. J Cereal Sci 45(2):172–183. doi:10.1016/j.jcs.2006.07.009

    Article  CAS  Google Scholar 

  • Branlard G, Dardevet M (1985) Diversity of grain protein and bread wheat quality: II. Correlation between high molecular weight subunits of glutenin and flour quality characteristics. J Cereal Sci 3(4):345–354. doi:10.1016/S0733-5210(85)80007-2

    Article  CAS  Google Scholar 

  • Breseghello F, Sorrells ME (2007) QTL analysis of kernel size and shape in two hexaploid wheat mapping populations. Field crops research 101(2):172–179. doi:10.1016/j.fcr.2006.11.008

    Article  Google Scholar 

  • Bretagnolle F, Thompson JD, Lumaret R (1995) the influence of seed size variation on seed germination and seedling vigour in diploid and tetraploid Dactylis glomerata L. Ann Bot 76(6):607–615. doi:10.1006/anbo.1995.1138

    Article  Google Scholar 

  • Broman KW, Wu H, Sen Ś, Churchill GA (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19:889–890. doi:10.1093/bioinformatics/btg112

    Article  CAS  PubMed  Google Scholar 

  • Campbell KG, Bergman CJ, Gualberto DG, Anderson JA, Giroux MJ, Hareland G, Fulcher RG, Sorrells ME, Finney PL (1999) Quantitative trait loci associated with kernel traits in a soft X hard wheat cross. Crop Sci 39:1184–1195

    Article  CAS  Google Scholar 

  • Cavanagh C et al (2013) Genome-wide comparative diversity uncovers multiple targets of selection for improvement in a worldwide sample of hexaploid wheat landrace and cultivars. Proc Nat Acad Sci 110:8057–8062

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Comai L (2005) The advantages and disadvantages of being polyploid. Nat Rev Genet 6(11):836–846. doi:10.1038/nrg1711

    Article  CAS  PubMed  Google Scholar 

  • Cook JP, Wichman DM, Martin JM, Bruckner PL, Talbert LE (2004) Identification of microsatellite markers associated with a stem solidness locus in wheat. Crop Sci 44(4):1397–1402. doi:10.2135/cropsci2004.1397

    Article  CAS  Google Scholar 

  • Dholakia BB, Ammiraju JSS, Singh H, Lagu MD, Röder MS, Rao VS, Dhaliwal HS, Ranjekar PK, Gupta VS, Weber WE (2003) Molecular marker analysis of kernel size and shape in bread wheat. Plant Breed 122(5):392–395. doi:10.1046/j.1439-0523.2003.00896.x

    Article  CAS  Google Scholar 

  • Edmands S (1999) Heterosis and outbreeding depression in interpopulation crosses spanning a wide range of divergence. Evolution. 1757–1768. doi: 10.2307/2640438

  • Feuillet C, Langridge P, Waugh R (2008) Cereal breeding takes a walk on the wild side. Trends Genet 24(1):24–32. doi:10.1016/j.tig.2007.11.001

    Article  CAS  PubMed  Google Scholar 

  • Giroux MJ, Morris CF (1998) Wheat grain hardness results from highly conserved mutations in the friabilin components puroindoline a and b. Proc Nat Acad Sci USA 95:6262–6266. doi:10.1073/pnas.95.11.6262

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Groos C, Bervas E, Charmet G (2004) Genetic analysis of grain protein content, grain hardness and dough rheology in a hard X Hard bread wheat progeny. J Cereal Sci 40:93–100. doi:10.1016/j.jcs.2004.08.006

    Article  CAS  Google Scholar 

  • Haley CS, Knott SA (1992) A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 69:315–324. doi:10.1038/hdy.1992.131

    Article  CAS  PubMed  Google Scholar 

  • Halloran GM, Pennell AL (1982) Grain size and seedling growth of wheat at different ploidy levels. Ann Bot 49(1):103–113

    Google Scholar 

  • Haudry A, Cenci A, Ravel C, Bataillon T, Brunel D, Poncet C, Hochu I, Poirier S, Santoni S, Glémin S, David J (2007) Grinding up wheat: a massive loss of nucleotide diversity since domestication. Mol Biol Evol 24(7):1506–1517. doi:10.1093/molbev/msm077

    Article  CAS  PubMed  Google Scholar 

  • Kemp HJ (1934) Studies of solid stem wheat varieties in relation to wheat stem sawfly control. Sci Agric 15:30–38

    Google Scholar 

  • Kilian B, Martin W, Salamini F (2010) Genetic diversity, evolution and domestication of wheat and barley in the Fertile Crescent. Evolution in Action. Springer, Berlin Heidelberg, pp 137–166

    Chapter  Google Scholar 

  • Kolmer JA, Dyck PL, Roelfs AP (1991) An appraisal of stem and leaf rust resistance in North American hard red spring wheats and the probability of multiple mutations to virulence in populations of cereal rust fungi. Phytopathology 81:237–239

    Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175. doi:10.1111/j.1469-1809.1943.tb02321.x

    Article  Google Scholar 

  • Lacerenza JA, Martin JM, Talbert LE, Lanning SP, Giroux MJ (2008) Relationship of ethanol yield to agronomic and seed quality characteristics of small grains. Cereal Chem 85(3):322–328. doi:10.1094/CCHEM-85-3-0322

    Article  CAS  Google Scholar 

  • Lanning SK, Carlson GR, Nash D, Wichman DM, Kephart KD, Stougaard RN, Kushnak GD, Eckhoff JL, Grey WE, Talbert LE (2004) Registration of Choteau wheat. Crop Sci 44:2264–2265

    Article  Google Scholar 

  • Lanning SP, Blake NK, Sherman JD, Talbert LE (2008) Variable production of tetraploid and hexaploid progeny lines from spring wheat by durum wheat crosses. Crop Sci 48(1):199–202. doi:10.2135/cropsci2007.06.0334

    Article  Google Scholar 

  • Law CN, Young CF, Brown JWS, Snape JW, Worland JW (1978) The study of grain protein control in wheat using whole chromosome substitution lines. Seed protein improvement by nuclear techniques. International Atomic Energy Agency, Vienna, pp 483–502

    Google Scholar 

  • Levy AA, Feldman M (2002) The impact of polyploidy on grass genome evolution. Plant Physiol 130(4):1587–1593. doi:10.1104/pp.015727

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li S, Jia J, Wei X, Zhang X, Li L, Chen H, Fan Y, Sun H, Zhao X, Lei T, Xu Y, Jiang F, Wang H, Li L (2007) A intervarietal genetic map and QTL analysis for yield traits in wheat. Mol Breeding 20:167–178. doi:10.1007/s11032-007-9080-3

    Article  Google Scholar 

  • Martin A, Simpfendorfer S, Hare RA, Eberhard FS, Sutherland MW (2011) Retention of De genome chromosomes in pentaploid wheat crosses. Heredity 107(4):315–319

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McIntosh RA, Yamazaki Y, Devos KM, Dubcovsky J, Rogers WJ, and Appels R (2003) Catalogue of gene symbols for wheat. In: 10th International Wheat Genetics Symposium, Paestum (Italie)

  • Mesfin A, Frohberg RC, Anderson JA (1999) RFLP markers associated with high grain protein from Triticum turgidum L. var.dicoccoides introgressed into hard red spring wheat. Crop Sci 39:508–513

    Article  CAS  Google Scholar 

  • Mujeeb-Kazi A, Rosas V, Roldan S (1996) Conservation of the genetic variation of Triticum tauschii (Coss.) Schmalh. (Aegilops squarrosa auct. non L.) in synthetic hexaploid wheats (T. turgidum L. s. lat. x T. tauschii; 2n = 6x = 42, AABBDD) and its potential utilization for wheat improvement. Genet Resour Crop Evol 43(2):129–134. doi:10.1007/BF00126756

    Article  Google Scholar 

  • Payne PI (1987) Genetics of wheat storage proteins and the effect of allelic variation on bread-making quality. Annu Rev Plant Physiol 38:141–153. doi:10.1146/annurev.pp.38.060187.001041

    Article  CAS  Google Scholar 

  • Pinckney AJ, Greenaway WT, Zeleny L (1957) Further developments in the sedimentation test for wheat quality. Cereal Chem 34:16

    CAS  Google Scholar 

  • Platt AW, Farstad CW (1946) The reaction of wheat varieties to sawfly attack. Sci Agric 26:231–247

    Google Scholar 

  • R Development Core Team (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

  • Ramya P, Chaubal A, Kulkarni K, Gupta L, Kadoo N, Dhaliwal HS, Chhuneja P, Lagu M, Gupta V (2010) J Appl Genet 51(4):421–429. doi:10.1007/BF03208872

    Article  CAS  PubMed  Google Scholar 

  • Russo MA, Ficco DBM, Laido G, Marone D, Papa R, Blanco A, Gadaleta A, De Vita P, Mastrangelo AM (2014) A dense durum wheat x T. dicoccum linkage map based on SNP markers for the study of seed morphology. Mol Breeding 34:1579–1597. doi:10.1007/s11032-014-0181-5

    Article  Google Scholar 

  • SAS Institute, Inc. 2010. SAS/STAT 9.3 User’s Guide. SAS Institute, Inc. Cary, NC

  • Sen S, Churchill GA (2001) A statistical framework for quantitative trait mapping. Genetics 159:371–387

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sharma HC, Gill BS (1983) Current status of wide hybridization in wheat. Euphytica 32(1):17–31. doi:10.1007/BF00036860

    Article  Google Scholar 

  • Talbert LE, Sherman JD, Hofland ML, Lanning SP, Blake NK, Grabbe R, Lamb PF, Martin JM, Weaver DK (2014) Resistance to Cephus cinctus Norton, the wheat stem sawfly, in a recombinant inbred line population of wheat derived from two resistance sources. Plant Breeding 133:427–432

    Article  CAS  Google Scholar 

  • Trethowan RM, Singh RP, Huerta-Espino J, Crossa J, Van Ginkel M (2001) Coleoptile length variation of near-isogenic Rht lines of modern CIMMYT bread and durum wheats. Field Crops Research 70(3):167–176. doi:10.1016/S0378-4290(00)00153-2

    Article  Google Scholar 

  • Tsilo TJ, Hareland GA, Simsek S, Chao S, Anderson JA (2010) Genome mapping of kernel characteristics in hard red spring wheat breeding lines. Theor Appl Genet 121:717–730. doi:10.1007/s00122-010-1343-4

    Article  CAS  PubMed  Google Scholar 

  • Udall JA, Wendel JF (2006) Polyploidy and crop improvement. Crop Science 46(Supplement_1):S-3. doi:10.2135/cropsci2006.07.0489tpg

    Article  Google Scholar 

  • Van Dijk P, Van Delden W (1990) Evidence for autotetraploidy in Plantago media and comparisons between natural and artificial cytotypes concerning cell size and fertility. Heredity 65(3):349–357. doi:10.1038/hdy.1990.104

    Article  Google Scholar 

  • Wang S et al (2014) Characterization of polyploid wheat genomic diversity using a high-density 90 000 single nucleotide polymorphism array. Plant Biotechnol J. doi:10.1111/pbi.12183

    Google Scholar 

  • Wolfinger R, Federer WT, Cordero-Brana O (1997) Recovering information in augmented designs, using SAS PROC GLM and PROC MIXED. Agronomy Journal 89(6):856–859. doi:10.2134/agronj1997.00021962008900060002x

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by Grants from the Montana Wheat and Barley Committee and by USDA National Institute of Food and Agriculture awards 2011-68002-30029 and 2013-67013-21106.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. E. Talbert.

Additional information

Communicated by A. H. Schulman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalous, J.R., Martin, J.M., Sherman, J.D. et al. Impact of the D genome and quantitative trait loci on quantitative traits in a spring durum by spring bread wheat cross. Theor Appl Genet 128, 1799–1811 (2015). https://doi.org/10.1007/s00122-015-2548-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-015-2548-3

Keywords

Navigation