Skip to main content
Log in

Copy number and haplotype variation at the VRN-A1 and central FR-A2 loci are associated with frost tolerance in hexaploid wheat

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

The interaction between VRN - A1 and FR - A2 largely affect the frost tolerance of hexaploid wheat.

Abstract

Frost tolerance is critical for wheat survival during cold winters. Natural variation for this trait is mainly associated with allelic differences at the VERNALIZATION 1 (VRN1) and FROST RESISTANCE 2 (FR2) loci. VRN1 regulates the transition between vegetative and reproductive stages and FR2, a locus including several tandemly duplicated C-REPEAT BINDING FACTOR (CBF) transcription factors, regulates the expression of Cold-regulated genes. We identified sequence and copy number variation at these two loci among winter and spring wheat varieties and characterized their association with frost tolerance. We identified two FR-A2 haplotypes—‘FR-A2-S’ and ‘FR-A2-T’—distinguished by two insertion/deletions and ten single nucleotide polymorphisms within the CBF-A12 and CBF-A15 genes. Increased copy number of CBF-A14 was frequently associated with the FR-A2-T haplotype and with higher CBF14 transcript levels in response to cold. Factorial ANOVAs revealed significant interactions between VRN1 and FR-A2 for frost tolerance in both winter and spring panels suggesting a crosstalk between vernalization and cold acclimation pathways. The model including these two loci and their interaction explained 32.0 and 20.7 % of the variation in frost tolerance in the winter and spring panels, respectively. The interaction was validated in a winter wheat F 4:5 population segregating for both genes. Increased VRN-A1 copy number was associated with improved frost tolerance among varieties carrying the FR-A2-T allele but not among those carrying the FR-A2-S allele. These results suggest that selection of varieties carrying the FR-A2-T allele and three copies of the recessive vrn-A1 allele would be a good strategy to improve frost tolerance in wheat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Båga M, Chodaparambil SV, Limin AE, Pecar M, Fowler DB, Chibbar RN (2007) Identification of quantitative trait loci and associated candidate genes for low-temperature tolerance in cold-hardy winter wheat. Funct Integr Genomics 7:53–68

    Article  PubMed  Google Scholar 

  • Chen Y, Carver BF, Wang S, Zhang F, Yan L (2009) Genetic loci associated with stem elongation and winter dormancy release in wheat. Theor Appl Genet 118:881–889

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Carver BF, Wang S, Cao S, Yan L (2010) Genetic regulation of developmental phases in winter wheat. Mol Breed 26:573–582

    Article  Google Scholar 

  • Dhillon T, Stockinger EJ (2013) Cbf14 copy number variation in the A, B and D genomes of diploid and polyploid wheat. Theor Appl Genet 126:2777–2789

    Article  CAS  PubMed  Google Scholar 

  • Dhillon T, Pearce SP, Stockinger EJ, Distelfeld A, Li C, Knox AK, Vashegyi I, Vágújfalvi A, Galiba G, Dubcovsky J (2010) Regulation of freezing tolerance and flowering in temperate cereals: the VRN-1 connection. Plant Physiol 153:1846–1858

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Díaz A, Zikhali M, Turner AS, Isaac P, Laurie DA (2012) Copy number variation affecting the Photoperiod-B1 and Vernalization-A1 genes is associated with altered flowering time in wheat (Triticum aestivum). PLoS One 7:e33234

    Article  PubMed Central  PubMed  Google Scholar 

  • Eagles HA, Cane K, Trevaskis B (2011) Veery wheats carry an allele of Vrn-A1 that has implications for freezing tolerance in winter wheats. Plant Breed 130:413–418

    Article  CAS  Google Scholar 

  • Francia E, Rizza F, Cattivelli L, Staca AM, Galiba G, Tóth B, Hayes PM, Skinner JS, Pecchioni N (2004) Two loci on chromosome 5H determine low-temperature tolerance in a ‘Nure’ (winter) x ‘Tremois’ (spring) barley map. Theor Appl Genet 108:670–680

    Article  CAS  PubMed  Google Scholar 

  • Francia E, Barabaschi D, Tondelli A, Laidò G, Rizza F, Stanca AM, Busconi M, Fogher C, Stockinger EJ, Pecchioni N (2007) Fine mapping of a HvCBF gene cluster at the frost resistance locus Fr-H2 in barley. Theor Appl Genet 115:1083–1091

    Article  CAS  PubMed  Google Scholar 

  • Fricano A, Rizza F, Faccioli P, Pagani D, Pavan P, Stella A, Rossini L, Piffanelli P, Cattiveli L (2009) Genetic variants of HvCbf14 are statistically associated with frost tolerance in a European germplasm collection of Hordeum vulgare. Theor Appl Genet 119:1335–1348

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fu D, Szűcs P, Yan L, Helguera M, Skinner J, Zitzewitz JV, Hayes PM, Dubcovsky J (2005) Large deletions within the first intron in VRN-1 are associated with spring growth habit in barley and wheat. Mol Gen Genomics 273:54–65

    Article  CAS  Google Scholar 

  • Galiba G, Quarrie SA, Sutka J, Morgounov A, Snape JW (1995) RFLP mapping of the vernalization (Vrn1) and frost resistance (Fr1) genes on chromosome 5A of wheat. Theor Appl Genet 90:1174–1179

    Article  CAS  PubMed  Google Scholar 

  • Galiba G, Vágújfalvi A, Li C, Soltész A, Dubcovsky J (2009) Regulatory genes involved in the determination of frost tolerance in temperate cereals. Plant Sci 176:12–19

    Article  CAS  Google Scholar 

  • Gilmour SJ, Zarka DG, Stockinger EJ, Salazar MP, Houghton JM, Thomashow MF (1998) Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J 16:433–442

    Article  CAS  PubMed  Google Scholar 

  • Huang S, Sirikhachornkit A, Su XJ, Faris J, Gill B, Haselkorn R, Gornicki P (2002) Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploid wheat. Proc Nat Acad Sci USA 99:8133–8138

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kidwell KK, Shelton GB, Demacon VL, Burns JW, Carter BP, Chen XM, Morris CF, Pérez NAB (2006) Registration of ‘Louise’ wheat. Crop Sci 46:1384–1385

    Article  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  PubMed  Google Scholar 

  • Knox AK, Li C, Vágújfalvi A, Galiba G, Stockinger EJ, Dubcovsky J (2008) Identification of candidate CBF genes for the frost tolerance locus Fr-A m 2 in Tricitum monococcum. Plant Mol Biol 67:257–270

    Article  CAS  PubMed  Google Scholar 

  • Knox AK, Dhillon T, Cheng H, Tondelli A, Pecchioni N, Stockinger EJ (2010) CBF gene copy number variation at Frost Resistance-2 is associated with levels of freezing tolerance in temperate-climate cereals. Theor Appl Genet 121:21–35

    Article  PubMed  Google Scholar 

  • Kobayashi F, Takumi S, Kume S, Ishibashi M, Ohno R, Murai K, Nakamura C (2005) Regulation by Vrn-1/FR-1 chromosomal intervals of CBF-mediated Cor/Lea gene expression and freezing tolerance in common wheat. J Exp Bot 56:887–895

    Article  CAS  PubMed  Google Scholar 

  • Koemel JE, Guenzi AC, Anderson JA, Smith EL (2004) Cold hardiness of wheat near-isogenic lines differing in vernalization alleles. Theor Appl Genet 109:839–846

    Article  PubMed  Google Scholar 

  • Kronstad WE, Rohde CR, Kolding MF, Metzger RJ (1978) Registration of ‘Stephens’ wheat. Crop Sci 18:1097

    Article  Google Scholar 

  • Limin AE, Fowler DB (2006) Low-temperature tolerance and genetic potential in wheat (Triticum aestivum L.): response to photoperiod, vernalization, and plant development. Planta 224:360–366

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391–1406

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu Y, Zhao TJ, Liu JM, Liu WQ, Liu Q, Yan YB, Zhou HM (2006) The conserved Ala37 in the ERF/AP2 domain is essential for binding with the DRE element and the GCC box. FEBS Lett 580:1303–1308

    Article  CAS  PubMed  Google Scholar 

  • Loukoianov A, Yan L, Blechl A, Sanchez A, Dubcovsky J (2005) Regulation of VRN-1 vernalization genes in normal an transgenic polyploid wheat. Plant Physiol 138:2364–2373

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Luo MC, Yang ZL, You FM, Kawahara T, Waines JG, Dvorak J (2007) The structure of wild and domesticated emmer wheat populations, gene flow between them, and the site of emmer domestication. Theor Appl Genet 114:947–959

    Article  PubMed  Google Scholar 

  • McIntosh RA, Yamazaki Y, Dubcovsky J, Rogers WJ, Morris CF, Appels R, Xia XC (2013) Catalogue of gene symbols for wheat. In: McIntosh RA (ed) 12th International Wheat Genetics Symposium, Yokohama, Japan. http://www.shigen.nig.ac.jp/wheat/komugi/genes/macgene/2013/GeneCatalogueIntroduction.pdf

  • Medina J, Bargues M, Terol J, Perez-Alonso M, Salinas J (1999) The Arabidopsis CBF gene family is composed of three genes encoding AP2 domain-containing proteins whose expression is regulated by low temperature but not by abscisic acid or dehydration. Plant Physiol 119:463–469

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Miller AK, Galiba G, Dubcovsky J (2006) A cluster of 11 CBF transcription factors is located at the frost tolerance locus Fr-Am 2 in Triticum monococcum. Mol Gen Genomics 275:193–203

    Article  CAS  Google Scholar 

  • Morran S, Eini O, Pyvovarenko T, Parent B, Singh R, Ismagul A, Eliby S, Shirley N, Langridge P, Lopato S (2011) Improvement of stress tolerance of wheat and barley by modulation of expression of DREB/CBF factors. Plant Biotechnol J 9:230–249

    Article  CAS  PubMed  Google Scholar 

  • Motomura Y, Kobayashi F, Iehisa JCM, Takumi S (2013) A major quantitative trait locus for cold-responsive gene expression is linked to frost-resistance gene FR-A2 in common wheat. Breed Sci 63:58–67

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nakano T, Suzuki K, Fujimura T, Shinshi H (2006) Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol 140:411–432

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nevo E, Beiles A (1989) Genetic diversity of wild emmer wheat in Israel and Turkey—structure, evolution and applications in breeding. Theor Appl Genet 77:421–455

    Article  CAS  PubMed  Google Scholar 

  • Pearce S, Zhu J, Boldizsár Á, Vágújfalvi A, Burke A, Campbell KG, Galiba G, Dubcovsky J (2013) Large deletions in the CBF gene cluster at the Fr-B2 locus are associated with reduced frost tolerance in wheat. Theor Appl Genet 126:2683–2697

    Article  PubMed  Google Scholar 

  • Peleg Z, Fahima T, Abbo S, Krugman T, Nevo E, Yakir D, Saranga Y (2005) Genetic diversity for drought resistance in wild emmer wheat and its ecogeographical associations. Plant Cell Environ 28:176–191

    Article  Google Scholar 

  • Peterson CJJ, Allan RE, Rubenthaler GL, Line RF (1991) Registration of ‘Eltan’ wheat. Crop Sci 31:1704

    Google Scholar 

  • Ramakrishna W, Dubcovsky J, Park YJ, Busso CS, Emberton J, SanMiguel P, Bennetzen JL (2002) Different types and rates of genome evolution detected by comparative sequence analysis of orthologous segments from four cereal genomes. Genetics 162:1389–1400

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reddy L, Allan RE, Campbell KAG (2006) Evaluation of cold hardiness in two sets of near-isogenic lines of wheat (Triticum aestivum) with polymorphic vernalization alleles. Plant Breed 125:448–456

    Article  CAS  Google Scholar 

  • Sandve SR, Fjellheim S (2010) Did gene family expansions during the Eocene-Oligocene boundary climate cooling play a role in Pooideae adaptation to cool climates? Mol Ecol 19:2075–2088

    Article  CAS  PubMed  Google Scholar 

  • Santra DK, Santra M, Allen RE, Campbell KG, Kidwell KK (2009) Genetic and molecular characterization of vernalization genes Vrn-A1, Vrn-B1, and Vrn-D1 in spring wheat germplasm from the Pacific Northwest region of the USA. Plant Breed 128:576–584

    Article  CAS  Google Scholar 

  • Skinner DZ, Campbell KAG (2008) Evidence of a major genetic factor conditioning freezing sensitivity in winter wheat. Plant Breed 127:228–234

    Article  Google Scholar 

  • Skinner JS, von Zitzewitz J, Szucs P, Maruez-Cedillo L, Filichkin T, Amundsen K, Stockinger EJ, Thomashow MF, Chen TH, Hayes PM (2005) Structural, functional, and phylogenetic characterization of a large CBF gene family in barley. Plant Mol Biol 59:533–551

    Article  CAS  PubMed  Google Scholar 

  • Stockinger EJ, Gilmour SJ, Thomashow MF (1997) Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci USA 94:1035–1040

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stockinger EJ, Skinner JS, Gardner KG, Francia E, Pecchioni N (2007) Expression levels of barley Cbf genes at the Frost resistance-H2 locus are dependent upon alleles at Fr-H1 and Fr-H2. Plant J 51:308–321

    Article  CAS  PubMed  Google Scholar 

  • Sutka J, Galiba G, Vágújfalvi A, Gill BS, Snape JW (1999) Physical mapping of the Vrn-A1 and Fr1 genes on chromosome 5A of wheat using deletion lines. Theor Appl Genet 99:199–202

    Article  CAS  Google Scholar 

  • Sutton F, Chen DG, Ge X, Kenefick D (2009) CBF genes of the FR-A2 allele are differentially regulated between long-term cold acclimated crown tissue of freeze-resistant and -susceptible, winter wheat mutant lines. BMC Plant Biol 9:34–42

    Article  PubMed Central  PubMed  Google Scholar 

  • Tóth B, Galiba G, Fehér E, Sutka J, Snape JW (2003) Mapping genes affecting flowering time and frost resistance on chromosome 5B of wheat. Theor Appl Genet 107:509–514

    Article  PubMed  Google Scholar 

  • Vágújfalvi A, Galiba G, Cattivelli L, Dubcovsky J (2003) The cold-regulated transcriptional activator Cbf3 is linked to the frost-tolerance locus FR-A2 on wheat chromosome 5A. Mol Gen Genomics 269:60–67

    Google Scholar 

  • Vágújfalvi A, Aprile A, Miller A, Dubcovsky J, Delugu G, Galiba G, Cattivelli L (2005) The expression of several Cbf genes at the FR-A2 locus is linked to frost resistance in wheat. Mol Gen Genomics 274:506–514

    Article  Google Scholar 

  • Wang Z, Triezenberg SJ, Thomashow MF, Stockinger EJ (2005) Multiple hydrophobic motifs in Arabidopsis CBF1 COOH-terminus provide functional redundancy in trans-activation. Plant Mol Biol 58:543–559

    Article  CAS  PubMed  Google Scholar 

  • Yan L, Helguera M, Kato K, Fukuyama S, Sherman J, Dubcovsky J (2004) Allelic variation at the VRN-1 promoter region in polyploid wheat. Theor Appl Genet 109:1677–1686

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Gowda M, Würechum T, Longin CF, Korzun V, Kollers S, Schachschneider R, Zeng J, Fernando R, Dubcovsky J, Reif JC (2013) Dissecting the genetic architecture of frost tolerance in central European winter wheat. J Exp Bot 64:4453–4460

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This project was supported by the National Research Initiative Competitive Grants WNR-2008-01010 and 2011-68002-30029 (Triticeae-CAP) from the USDA National Institute of Food and Agriculture, the Washington Grains Commission Project No. 5345, and USDA, ARS (in house) CWU: 5348-21220-003-00D. JD also acknowledges support from the Howard Hughes Medical Institute and the Gordon and Betty Moore Foundation.

Conflict of interest

The experiments in this manuscript comply with the current laws of the United States. The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jorge Dubcovsky or Kimberly Garland-Campbell.

Additional information

Communicated by L. Xiong.

J. Zhu and S. Pearce contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 3920 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, J., Pearce, S., Burke, A. et al. Copy number and haplotype variation at the VRN-A1 and central FR-A2 loci are associated with frost tolerance in hexaploid wheat. Theor Appl Genet 127, 1183–1197 (2014). https://doi.org/10.1007/s00122-014-2290-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-014-2290-2

Keywords

Navigation