Skip to main content
Log in

OsGA20ox1, a candidate gene for a major QTL controlling seedling vigor in rice

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Seedling vigor is among the major determinants of stable stand establishment in direct-seeded rice (Oryza sativa L.) in temperate regions. Quantitative trait loci (QTL) for seedling vigor were identified using 250 recombinant inbred lines (RILs) derived from a cross between two japonica rice cultivars Kakehashi and Dunghan Shali. Seedling heights measured at 14 days after sowing were 20.3 and 29.4 cm for Kakehashi and Dunghan Shali, respectively. For the RILs, the height ranged from 14.1 to 31.7 cm. Four putative QTLs associated with seedling height were detected. qPHS3-2, the major QTL that was located on the long arm of chromosome 3, accounted for 26.2 % of the phenotypic variance. Using progeny of the near isogenic lines (NILs) produced by the backcross introduction of a chromosome segment carrying this major QTL into an elite cultivar Iwatekko, we fine-mapped qPHS3-2 to a 81-kb interval between two markers, ID_CAPS_01 and RM16227. Within this mapped region, we identified the gene OsGA20ox1, which is related to gibberellin (GA) biosynthesis. The relative expression levels of GA20ox1 in seedlings of Dunghan Shali and NILs were higher than that of Iwatekko. Concomitantly, the amount of endogenous active GA was higher in Dunghan Shali and the NILs compared to the level detected in Iwatekko. These results indicate that OsGA20ox1 is a strong candidate gene for major QTL controlling seedling vigor in rice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ashikari M, Matsuoka M (2006) Identification, isolation and pyramiding of quantitative trait loci for rice breeding. Trends Plant Sci 11:344–350

    Article  PubMed  CAS  Google Scholar 

  • Ashikari M, Sasaki A, Ueguchi-Tanaka M, Itoh H, Nishimura A, Datta S, Ishiyama K, Saito T, Kobayashi M, Khush GS, Kitano H, Matsuoka M (2002) Loss-of-function of a rice gibberellin biosynthetic gene, GA20 oxidase (GA20ox-2), led to the rice ‘Green Revolution’. Breed Sci 52:143–150

    Article  CAS  Google Scholar 

  • Basten CJ, Weir BS, Zeng ZB (2005) QTL cartographer, version 1.17. North Carolina State University, Raleigh, p 189

    Google Scholar 

  • Cui KH, Peng SB, Xing YZ, Xu CG, Yu SB, Zhang Q (2002) Molecular dissection of seedling-vigor and associated physiological traits in rice. Theor Appl Genet 105:745–753

    Article  PubMed  CAS  Google Scholar 

  • Hori K, Sugimoto K, Nonoue Y, Ono N, Matsubara K, Yamanouchi U, Abe A, Takeuchi Y, Yano M (2011) Detection of quantitative trait loci controlling pre-harvest sprouting resistance by using backcrossed populations of japonica rice cultivars. Theor Appl Genet 120:1547–1557

    Article  Google Scholar 

  • IRGSP (2005) The map-based sequence of the rice genome. Nature 436:793–800

    Article  Google Scholar 

  • Kaneko M, Itoh H, Inukai Y, Sakamoto T, Ueguchi-Tanaka M, Ashikari M, Matsuoka M (2003) Where do gibberellin biosynthesis and gibberellin signaling occur in rice plant? Plant J 35:104–115

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi M, MacMillan J, Phinney B, Gaskin P, Spray CR, Hedden P (2000) Gibberellin biosynthesis: metabolic evidence for three steps in the early 13-hydroxylation pathway of rice. Phytochemistry 55:317–321

    Article  PubMed  CAS  Google Scholar 

  • Kojima M, Kamada-Nobusada T, Komatsu H, Takei K, Kuroha T, Mizutani M, Ashikari M, Ueguchi-Tanaka M, Matsuoka M, Suzuki K, Sakakibara H (2009) Highly sensitive and high-throughput analysis of plant hormones using MS-probe modification and liquid chromatography-tandem mass spectrometry: an application for hormone profiling in Oryza sativa. Plant Cell Physiol 50:1201–1214

    Article  PubMed  CAS  Google Scholar 

  • Kosambi DD (1943) The estimation of map distance from recombination values. Ann Hum Genet 12:172–175

    Article  Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newberg LA (1987) MAPMAKER—an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  PubMed  CAS  Google Scholar 

  • Matsubara K, Kono I, Hori K, Nonoue Y, Ono N, Shomura A, Mizubayashi T, Yamamoto S, Yamanouchi U, Shirasawa K, Nishio T, Yano M (2008) Novel QTLs for photoperiodic flowering revealed by using reciprocal backcross inbred lines from crosses between japonica rice cultivars. Theor Appl Genet 117:935–945

    Article  PubMed  CAS  Google Scholar 

  • Matsubara K, Ebana K, Mizubayashi T, Itoh S, Ando T, Nonoue Y, Ono N, Shibaya T, Ogiso E, Hori K, Fukuoka S, Yano M (2011) Relationship between transmission ratio distortion and genetic divergence in intraspecific rice crosses. Mol Genet Genomics 286:307–319

    Article  PubMed  CAS  Google Scholar 

  • McCouch SR, Teytelman L, Xu Y, Lobos KB, Clare K, Walton M, Fu B, Maghirang R, Li Z, Xing Y, Zhang Q, Kono I, Yano M, Fjellstrom R, DeClerck G, Schneider D, Cartinhour S, Ware D, Stein L (2002) Development and mapping of 2,240 new SSR markers for rice (Oryza sativa L.). DNA Res 9:199–207

    Article  PubMed  CAS  Google Scholar 

  • Miura K, Ashikari M, Matsuoka M (2011) The role of QTLs in the breeding of high-yielding rice. Trends Plant Sci 16:319–326

    Article  PubMed  CAS  Google Scholar 

  • Ohyanagi H, Tanaka T, Sasaki H, Shigemoto Y, Yamaguchi K, Habara T, Fujii Y, Antonio BA, Nagamura Y, Imanishi T, Ikeo K, Itoh T, Gojobori T, Sasaki T (2006) The Rice Annotation Project Database (RAP-DB): hub for Oryza sativa ssp. japonica genome information. Nucleic Acids Res 34:D741–D744

    Article  PubMed  CAS  Google Scholar 

  • Oikawa T, Koshioka M, Kojima K, Yoshida H, Kawata M (2004) A role of OsGA20ox1, encoding an isoform of gibberellin 20-oxidase, for regulation of plant stature in rice. Plant Mol Biol 55:687–700

    Article  PubMed  CAS  Google Scholar 

  • Olszewski N, Sun TP, Gubler F (2002) Gibberellin signaling: biosynthesis, catabolism, and response pathways. Plant Cell 14:S61–S80

    PubMed  CAS  Google Scholar 

  • Onishi K, Horiuchi Y, Ishigho-Oka N, Takagi K, Ichikawa N, Maruoka M, Sano Y (2007) A QTL cluster for plant architecture and its ecological significance in Asian wild rice. Breed Sci 57:7–16

    Article  Google Scholar 

  • Paterson AH, Lander ES, Hewitt JD, Peterson S, Lincoln SE, Tanksley SD (1988) Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature 335:721–726

    Article  PubMed  CAS  Google Scholar 

  • Peterson ML, Jones DB, Rutger JN (1978) Cool temperature screening of rice lines for seedling vigor. Riso 27:269–274

    Google Scholar 

  • Rao AN, Johnson DE, Sivaprasad B, Ladha JK, Mortimer AM (2007) Weed management in direct-seeded rice. Adv Agron 93:153–255

    Article  CAS  Google Scholar 

  • Redona ED, Mackill DJ (1996a) Genetic variation for seedling-vigour traits in rice. Crop Sci 36:285–290

    Article  Google Scholar 

  • Redona ED, Mackill DJ (1996b) Mapping quantitative trait loci for seedling-vigour in rice using RFLPs. Theor Appl Genet 92:395–402

    Article  CAS  Google Scholar 

  • Sasahara T, Ikarashi K, Kambayashi M (1986) Genetic variations in embryo and endosperm weights, seedling growth parameters and alpha-amylase activity of the germinated grains in rice (Oryza sativa L.). Jpn J Breed 36:248–261

    CAS  Google Scholar 

  • Sasaki A, Ashikari M, Ueguchi-Tanaka M, Ithoh H, Nishimura A, Swapan D, Ishiyama K, Saito T, Kobayashi M, Khush GS, Kitano H, Matsuoka M (2002) A mutant gibberellin-synthesis gene in rice. Nature 416:701–702

    Article  PubMed  CAS  Google Scholar 

  • Toyomasu T, Kawaide H, Sekimoto H, Numers CV, Phillips AL, Hedden P, Kamiya Y (1997) Cloning and characterization of a cDNA encoding gibberellin 20-oxidase from rice (Oryza sativa) seedlings. Physiol Plantarum 99:111–118

    Article  CAS  Google Scholar 

  • Williams JF, Peterson ML (1973) Relations between alpha-amylase activity at and growth of rice seedlings. Crop Sci 13:612–615

    Article  CAS  Google Scholar 

  • Yamaguchi S, Kamiya Y (2000) Gibberellin biosynthesis: its regulation by endogenous and environmental signals. Plant Cell Physiol 41:251–257

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto T, Yonemaru J, Yano M (2009) Towards the understanding of complex traits in rice: substantially or superficially? DNA Res 16:141–154

    Article  PubMed  CAS  Google Scholar 

  • Yano M (2001) Genetic and molecular dissection of naturally occurring variation. Curr Opin Plant Biol 4:130–135

    Article  PubMed  CAS  Google Scholar 

  • Yano M, Sasaki T (1997) Genetic and molecular dissection of quantitative traits in rice. Plant Mol Biol 35:145–153

    Article  PubMed  CAS  Google Scholar 

  • Yano K, Takashi T, Nagamatsu S, Kojima M, Sakakibara H, Kitano H, Matsuoka M, Aya K (2012) Efficacy of microarray profiling data combined with QTL mapping for the identification of a QTL gene controlling the initial growth rate in rice. Plant Cell Physiol. doi:10.1093/pcp/pcs027

  • Zhang ZH, Qu XS, Wan S, Chen LH, Zhu YG (2005a) Comparison of QTL controlling seedling vigour under different temperature conditions using recombinant inbred lines in rice (Oryza sativa). Ann Bot 95:423–429

    Article  PubMed  CAS  Google Scholar 

  • Zhang ZH, Yu SB, Yu T, Huang Z, Zhu YG (2005b) Mapping quantitative trait loci (QTLs) for seedling-vigor using recombinant inbred lines of rice (Oryza sativa L.). Field Crops Res 91:161–170

    Article  Google Scholar 

  • Zhou L, Wang JK, Yi Q, Wang YZ, Zhu YG, Zhang ZH (2007) Quantitative trait loci for seedling vigor in rice under field conditions. Field Crops Res 100:249–301

    Article  Google Scholar 

Download references

Acknowledgments

We thank Yutaka Kiuchi, Tsutomu Sasaki and Hitoshi Hatakeyama for general support of the work. We are also grateful to the following staffs for technical support: N. Kikuchi, E. Kanzaki, J. Tokuta, A. Yamaguchi, Y. Ogasawara, K. Itoh and Y. Ochiai. Our gratitude extends to Muluneh Tamiru for improvement of the manuscript. We thank the NIAS Genebank, Japan for providing the seeds of Dunghan Shali. This work was supported by the Program for Promotion of Basic and Applied Researches for Innovations in Bio-oriented Industry (PRO-BRAIN) and by Japan Advanced Plant Science Network.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Abe.

Additional information

Communicated by L. Xiong.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 83 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abe, A., Takagi, H., Fujibe, T. et al. OsGA20ox1, a candidate gene for a major QTL controlling seedling vigor in rice. Theor Appl Genet 125, 647–657 (2012). https://doi.org/10.1007/s00122-012-1857-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-012-1857-z

Keywords

Navigation