Skip to main content
Log in

Novel QTLs for photoperiodic flowering revealed by using reciprocal backcross inbred lines from crosses between japonica rice cultivars

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

The rice japonica cultivars Nipponbare and Koshihikari differ in heading date and response of heading to photoperiod (photoperiod sensitivity). Using simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers, we conducted quantitative trait locus (QTL) analyses for heading date in a set of reciprocal backcross inbred lines (BILs) from crosses between Nipponbare and Koshihikari. Under natural-day conditions, transgressive segregation in days to heading (DTH) toward both early and late heading was observed in both BIL populations. QTL analyses revealed that two QTLs—on chromosomes 3 and 6—were involved in the difference in heading date between the parental cultivars. The Nipponbare allele at the QTLs on chromosomes 3 and 6 showed, respectively, increasing and decreasing effects on DTH in both BIL populations. The transgressive segregation observed in the BILs could be accounted for mainly by the complementary action of a set of alleles with opposing effects. Both QTLs were finely mapped as single Mendelian factors in secondary mapping populations (BC2F2 plants/BC2F3 lines). The QTL on chromosome 3 was mapped in the 1,140-kb interval between 94O03-4 (SSR) and OJ21G19-4 (SNP) and was designated Hd16. The QTL on chromosome 6 was mapped in the 328-kb interval between P548D347 (SSR) and 0007O20 (SSR) and was designated Hd17. Both Hd16 and Hd17 were involved in photoperiod sensitivity, as revealed by observation of the DTH of nearly isogenic lines of Nipponbare under short- and long-day conditions, suggesting that allelic differences in both Hd16 and Hd17 account for most of the difference in photoperiod sensitivity between the parental cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alonso-Blanco C, Mendez-Vigo B, Koornneef M (2005) From phenotypic to molecular polymorphisms involved in naturally occurring variation of plant development. Int J Dev Biol 49:717–732

    Article  PubMed  CAS  Google Scholar 

  • Basten CJ, Weir BS, Zeng ZB (2005) QTL cartographer, version 1.17. Department of Statistics, North Carolina State University, Raleigh

  • Blow N (2007) The personal side of genomics. Nature 449:627–630

    Article  PubMed  CAS  Google Scholar 

  • Chen X, Temnykh S, Xu Y, Cho YG, McCouch SR (1997) Development of a microsatellite framework map providing genome-wide coverage in rice (Oryza sativa L.). Theor Appl Genet 95:553–567

    Article  CAS  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    PubMed  CAS  Google Scholar 

  • Doebley JF, Gaut BS, Smith BD (2006) The molecular genetics of crop domestication. Cell 127:1309–1321

    Article  PubMed  CAS  Google Scholar 

  • Doerge RW, Churchill GA (1996) Permutation tests for multiple loci affecting a quantitative character. Genetics 142:285–294

    PubMed  CAS  Google Scholar 

  • Doi K, Yoshimura A, Iwata N (1998) RFLP mapping and QTL analysis of heading date and pollen sterility using backcross populations between Oryza sativa L. and Oryza glaberrima Steud. Breed Sci 48:395–399

    CAS  Google Scholar 

  • Doi K, Izawa T, Fuse T, Yamanouchi U, Kubo T, Shimatani Z, Yano M, Yoshimura A (2004) Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Genes Dev 18:926–936

    Article  PubMed  CAS  Google Scholar 

  • Garris AJ, Tai TH, Coburn J, Kresovich S, McCouch S (2005) Genetic structure and diversity in Oryza sativa L. Genetics 169:1631–1638

    Article  PubMed  CAS  Google Scholar 

  • Grant V (1975) Genetics of flowering plants. Columbia University Press, New York, pp 169–193

    Google Scholar 

  • Gu XU, Foley ME (2007) Epistatic interactions of three loci regulate flowering time under short and long daylengths in a backcross population of rice. Theor Appl Genet 114:745–754

    Article  PubMed  Google Scholar 

  • Hamajima N (2001) PCR-CTPP: a new genotyping technique in the era of genetic epidemiology. Exp Rev Mol Diagn 1:119–123

    Article  CAS  Google Scholar 

  • Harlan JR (1975) Crops and man. American Society of Agronomy and Crop Science Society of America, Madison, pp 123–146

    Google Scholar 

  • Hayama R, Coupland G (2004) The molecular basis of diversity in the photoperiodic flowering responses of Arabidopsis and rice. Plant Physiol 135:677–684

    Article  PubMed  CAS  Google Scholar 

  • Hutchison CAIII (2007) DNA sequencing: bench to beside and beyond. Nucleic Acids Res 35:6227–6237

    Article  PubMed  CAS  Google Scholar 

  • Ichitani K, Okumoto Y, Tanisaka T (1997) Photoperiod sensitivity gene of Se-1 locus found in photoperiod insensitive rice cultivars of the northern limit region of rice cultivation. Breed Sci 47:145–152

    Google Scholar 

  • Ichitani K, Okumoto Y, Tanisaka T (1998a) Genetic analyses of low photoperiod sensitivity of rice cultivars from the northernmost regions of Japan. Plant Breed 117:543–547

    Article  Google Scholar 

  • Ichitani K, Okumoto Y, Tanisaka T (1998b) Genetic analysis of the rice cultivar Kasalath with special reference to two photoperiod sensitivity loci, E1 and Se-1. Breed Sci 48:51–57

    Google Scholar 

  • Project International Rice Genome Sequencing (2005) The map-based sequence of the rice genome. Nature 436:793–800

    Article  Google Scholar 

  • Izawa T (2007) Daylength measurements by rice plants in photoperiodic short-day flowering. Int Rev Cytol 256:191–222

    Article  PubMed  CAS  Google Scholar 

  • Izawa T, Oikawa T, Sugiyama N, Tanisaka T, Yano M, Shimamoto K (2002) Phytochrome mediates the external light signal to repress FT orthologs in photoperiodic flowering of rice. Genes Dev 16:2006–2020

    Article  PubMed  CAS  Google Scholar 

  • Izawa T, Takahashi Y, Yano M (2003) Comparative biology comes into bloom: genomic and genetic comparison of flowering pathways in rice and Arabidopsis. Curr Opin Plant Biol 6:113–120

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi A, Genliang B, Shenghai Y, Tomita K (2007) Detection of quantitative loci for white-back and basal-white kernels under high temperature stress in japonica rice varieties. Breed Sci 57:107–116

    Article  Google Scholar 

  • Kojima S, Takahashi Y, Kobayashi Y, Monna L, Sasaki T, Araki T, Yano M (2002) Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant Cell Physiol 43:1096–1105

    Article  PubMed  CAS  Google Scholar 

  • Kono I, Takeuchi Y, Shimano T, Sasaki T, Yano M (2000) Comparison of efficiency of detecting polymorphism among japonica varieties in rice using RFLP, RAPD, AFLP and SSR markers. Breed Res 2:197–203

    Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) Mapmaker: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  PubMed  CAS  Google Scholar 

  • Lin HX, Yamamoto T, Sasaki T, Yano M (2000) Characterization and detection of epistatic interactions of three QTLs, Hd1, Hd2 and Hd3, controlling heading date in rice using nearly isogenic lines. Theor Appl Genet 101:1021–1028

    Article  CAS  Google Scholar 

  • Lin HX, Liang ZW, Sasaki T, Yano M (2003) Fine mapping and characterization of quantitative trait loci Hd4 and Hd5 controlling heading date in rice. Breed Sci 53:51–59

    Article  CAS  Google Scholar 

  • McCouch SR, Teytelman L, Xu Y, Lobos KB, Clare K, Walton M, Fu B, Maghirang R, Li Z, Xing Y, Zhang Q, Kono I, Yano M, Fjellstrom R, DeClerck G, Schneider D, Cartinhour S, Ware D, Lincoln S (2002) Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res 9:199–207

    Article  PubMed  CAS  Google Scholar 

  • Monna L, Lin HX, Kojima S, Sasaki T, Yano M (2002) Genetic dissection of a genomic region for a quantitative trait locus, Hd3, into two loci, Hd3a and Hd3b, controlling heading date in rice. Theor Appl Genet 104:772–778

    Article  PubMed  CAS  Google Scholar 

  • Monna L, Ohta R, Masuda H, Koike A, Minobe Y (2006) Genome-wide searching of single-nucleotide polymorphisms among eight distantly and closely related rice cultivars (Oryza sativa L.) and a wild accession (Oryza rufipogon Griff.). DNA Res 13:43–51

    Article  PubMed  CAS  Google Scholar 

  • Morita S (2000) Effects of high air temperature on ripening in rice plants. Analysis of ripening performance under climate conditions by changing in cropping seasons and/or transferring pots from lowland to upland. Jpn J Crop Sci 69:400–405

    Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325

    Article  PubMed  CAS  Google Scholar 

  • Nasu S, Suzuki J, Ohta R, Hasegawa K, Yui R, Kitazawa N, Monna L, Minobe Y (2002) Search for and analysis of single nucleotide polymorphisms (SNPs) in rice (Oryza sativa, Oryza rufipogon) and establishment of SNP markers. DNA Res 9:163–171

    Article  PubMed  CAS  Google Scholar 

  • Neeraja CN, Maghirang-Rodriguez R, Pamplona A, Heuer S, Collard BC, Septiningsih EM, Vergara G, Sanchez D, Xu K, Ismail AM, Mackill DJ (2007) A marker-assisted backcross approach for developing submergence-tolerant rice cultivars. Theor Appl Genet 115:767–776

    Article  PubMed  CAS  Google Scholar 

  • Nonoue Y, Fujino K, Hirayama Y, Yamanouchi U, Lin SY, Yano M (2008) Detection of quantitative trait loci controlling extremely early heading in rice. Theor Appl Genet 116:715–722

    Article  PubMed  CAS  Google Scholar 

  • Ohyanagi H, Tanaka T, Sakai H, Shigemoto Y, Yamaguchi K, Habara T, Fujii Y, Antonio BA, Nagamura Y, Imanishi T, Ikeo K, Itoh T, Gojobori T, Sasaki T (2006) The Rice Annotation Project Database (RAP-DB): hub for Oryza sativa ssp. japonica genome information. Nucleic Acids Res 34:D741–D744

    Article  PubMed  CAS  Google Scholar 

  • Oka HI (1988) Origin of cultivated rice. JSSP/Elsevier, Tokyo and Amsterdam, pp 211–224

    Google Scholar 

  • Okumoto Y, Tanisaka T, Yamagata H (1991) Heading-time genes of the rice varieties grown in south-west-warm region in Japan. Jpn J Breed 41:135–152

    CAS  Google Scholar 

  • Okumoto Y, Tanisaka T, Yamagata H (1992) Heading-time genes of the rice varieties grown in the Tohoku-Hokuriku region in Japan. Jpn J Breed 42:121–135

    CAS  Google Scholar 

  • Okumoto Y, Ichitani K, Inoue H, Tanisaka T (1996) Photoperiod insensitivity gene essential to the varieties grown in the northern limit region of paddy rice (Oryza sativa L.) cultivation. Euphytica 92:63–66

    Article  Google Scholar 

  • Rieseberg LH, Widmer A, Arntz AM, Burke JM (2003) The genetic architecture necessary for transgressive segregation is common in both natural and domesticated populations. Philos Trans R Soc Lond B 358:1141–1147

    Article  CAS  Google Scholar 

  • Project Rice Annotation (2008) The Rice Annotation Project Database (RAP-DB): 2008 update. Nucleic Acids Res 36:D1028–D1033

    Article  Google Scholar 

  • Shirasawa K, Maeda H, Monna L, Kishitani S, Nishio T (2007) The number of genes having different alleles between rice cultivars estimated by SNP analysis. Theor Appl Genet 115:1067–1074

    Article  PubMed  CAS  Google Scholar 

  • Stebbins GL (1950) Variation and evolution in plants. Columbia University Press, New York, pp 3–41

    Google Scholar 

  • Tabata M, Hirabayashi H, Takeuchi Y, Ando I, Iida Y, Ohsawa R (2007) Mapping of quantitative trait loci for the occurrence of white-back kernels associated with high temperatures during the ripening period of rice (Oryza sativa L.). Breed Sci 57:47–52

    Article  Google Scholar 

  • Takahashi Y, Shomura A, Sasaki T, Yano M (2001) Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the α subunit of protein kinase CK2. Proc Natl Acad Sci USA 98:7922–7927

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi Y, Hayasaka H, Chiba B, Tanaka I, Shimano T, Yamagishi M, Nagano K, Sasaki T, Yano M (2001) Mapping quantitative loci controlling cool-temperature tolerance at booting stage in temperate japonica rice. Breed Sci 51:191–197

    Article  CAS  Google Scholar 

  • Takeuchi Y, Ebitani T, Yamamoto T, Sato H, Ohta H, Hirabayashi H, Kato H, Ando I, Nemoto H, Imbe T, Yano M (2006) Development of isogenic lines of rice cultivar Koshihikari with early and late heading by marker-assisted selection. Breed Sci 56:405–413

    Article  CAS  Google Scholar 

  • Tamaki S, Matsuo S, Wong HL, Yokoi S, Shimamoto K (2007) Hd3a protein is a mobile flowering signal in rice. Science 316:1033–1036

    Article  PubMed  CAS  Google Scholar 

  • Temnykh S, Park WD, Ayres N, Cartinhour S, Hauck N, Lipovich L, Cho YG, Ishii T, McCouch SR (2000) Mapping and genome organization of microsatellite sequences in rice (Oryza sativa L.). Theor Appl Genet 100:697–712

    Article  CAS  Google Scholar 

  • Uga Y, Nonoue Y, Liang ZW, Lin HX, Yamamoto S, Yano M (2007) Accumulation of additive effects generates a strong photoperiod sensitivity in the extremely late-heading rice cultivar ‘Nona Bokra’. Theor Appl Genet 114:1457–1466

    Article  PubMed  CAS  Google Scholar 

  • Vergara BS, Chang TT (1985) The flowering response of the rice plant to photoperiod, a review of the literature, 4th edn edn. International Rice Research Institute, Los Baños, pp 1–61

    Google Scholar 

  • Wada T, Uchimura Y, Ogata T, Tsubone M, Matsue Y (2006) Mapping of QTLs for physicochemical properties in japonica rice. Breed Sci 56:253–260

    Article  CAS  Google Scholar 

  • Xiao J, Li J, Yuan L, Tanksley SD (1996) Identification of QTLs affecting traits of agronomic importance in a recombinant inbred population derived from a subspecific rice cross. Theor Appl Genet 92:230–244

    Article  CAS  Google Scholar 

  • Yamamoto T, Lin HX, Sasaki T, Yano M (2000) Identification of heading date quantitative trait locus Hd6 and characterization of its epistatic interactions with Hd2 in rice using advanced backcross progeny. Genetics 154:885–891

    PubMed  CAS  Google Scholar 

  • Yano M (2001) Genetic and molecular dissection of naturally occurring variation. Curr Opin Plant Biol 4:130–135

    Article  PubMed  CAS  Google Scholar 

  • Yano M, Harushima Y, Nagamura Y, Kurata N, Minobe Y, Sasaki T (1997) Identification of quantitative trait loci controlling heading date in rice using a high-density linkage map. Theor Appl Genet 95:1025–1032

    Article  CAS  Google Scholar 

  • Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y, Sasaki T (2000) Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell 12:2473–2483

    Article  PubMed  CAS  Google Scholar 

  • Yano M, Kojima S, Yuji Takahashi Y, Lin HX, Sasaki T (2001) Genetic control of flowering time in rice, a short-day plant. Plant Physiol 127:1425–1429

    Article  PubMed  CAS  Google Scholar 

  • Zeng Z (1993) Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci. Proc Natl Acad Sci USA 90:10972–10976

    Article  PubMed  CAS  Google Scholar 

  • Zeng Z (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468

    PubMed  CAS  Google Scholar 

  • Zhu Q, Zheng X, Luo J, Gaut BS, Ge S (2007) Multilocus analysis of nucleotide variation of Oryza sativa and its wild relatives: severe bottleneck during domestication of rice. Mol Biol Evol 24:875–888

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Ministry of Agriculture, Forestry and Fisheries of Japan (Integrated research project for plant, insect and animal using genome technology IP-1001 and QT-1005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yano.

Additional information

Communicated by M. Sorrells.

K. Matsubara and I. Kono have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

MOESM1 [INSERT CAPTION HERE] (PDF 219 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsubara, K., Kono, I., Hori, K. et al. Novel QTLs for photoperiodic flowering revealed by using reciprocal backcross inbred lines from crosses between japonica rice cultivars. Theor Appl Genet 117, 935–945 (2008). https://doi.org/10.1007/s00122-008-0833-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-008-0833-0

Keywords

Navigation