Skip to main content
Log in

Molekulare Bildgebung bei neurologischen Erkrankungen

Molecular imaging in neurological diseases

  • Leitthema
  • Published:
Der Radiologe Aims and scope Submit manuscript

Zusammenfassung

Die Magnetresonanztomographie (MRT) weist als Standardverfahren bei neurodegenerativen und neuroonkologischen Fragestellungen eine eingeschränkte Sensitivität und Spezifität auf. Die nuklearmedizinische molekulare Bildgebung mit spezifischen Positronenemissionstomographie(PET)- und single-photon-emission-computed-tomography(SPECT)-Tracern ermöglicht die Darstellung verschiedener molekularer Targets bzw. Stoffwechselprozesse und stellt damit eine wichtige Ergänzung zur MRT dar. Hier sei exemplarisch auf die Darstellung des Aminosäuretransports im Rahmen neuroonkologischer Fragestellungen verwiesen, sowie auf die bereits im präklinischen Stadium der Alzheimer-Demenz nachweisbaren Amyloidablagerungen mit hierfür seit Kurzem zugelassenen PET-Tracern. Dieser Übersichtsbeitrag bespricht die klinische Bedeutung bzw. die Indikationen der folgenden nuklearmedizinischen Untersuchungsverfahren: der Amyloid-PET, der 18F-Fluordesoxyglucose-PET und der Dopamintransporter-SPECT im Rahmen der Demenzdiagnostik und der Differenzialdiagnose des Parkinsonsyndroms, sowie die Aminosäure-PET für die Diagnostik hirneigener Tumoren und die Somatostatinrezeptorbildgebung bei Meningeomen.

Abstract

In neurodegeneration and in neuro-oncology, the standard imaging procedure, magnetic resonance imaging (MRI), shows limited sensitivity and specificity. Molecular imaging with specific positron-emission tomography (PET) and single-photon emission computed tomography (SPECT) tracers allows various molecular targets and metabolic processes to be assessed and is thus a valuable adjunct to MRI. Two important examples are referred to here: amino acid transport for neuro-oncological issues, and the recently approved PET tracers for detecting amyloid depositions during the preclinical stage of Alzheimer’s disease. This review discusses the clinical relevance and indications for the following nuclear medicine imaging procedures: amyloid PET, 18F-fluorodeoxyglucose (FDG)-PET, and dopamine transporter (DaT)-SPECT for the diagnosis of dementia and the differential diagnosis of Parkinson’s disease, in addition to amino acid PET for the diagnosis of brain tumors and somatostatin receptor imaging in meningioma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Afshar-Oromieh A, Giesel FL, Linhart HG, Haberkorn U, Haufe S, Combs SE, Podlesek D, Eisenhut M, Kratochwil C (2012) Detection of cranial meningiomas: comparison of (6)(8)Ga-DOTATOC PET/CT and contrast-enhanced MRI. Eur J Nucl Med Mol Imaging 39:1409–1415

    Article  PubMed  Google Scholar 

  2. Alavi A, Dann R, Chawluk J, Alavi J, Kushner M, Reivich M (1986) Positron emission tomography imaging of regional cerebral glucose metabolism. Semin Nucl Med 16:2–34

    Article  CAS  PubMed  Google Scholar 

  3. Bailey DL, Pichler BJ, Guckel B, Barthel H, Beer AJ, Bremerich J, Czernin J, Drzezga A, Franzius C, Goh V, Hartenbach M, Iida H, Kjaer A, Fougere C la, Ladefoged CN, Law I, Nikolaou K, Quick HH, Sabri O, Schafer J, Schafers M, Wehrl HF, Beyer T (2015) Combined PET/MRI: multi-modality multi-parametric imaging is here. Mol Imaging Biol 17:595–608 (Summary Report of the 4th International Workshop on PET/MR Imaging; February 23-27, 2015, Tubingen, Germany)

    Article  CAS  PubMed  Google Scholar 

  4. Barker FG 2nd, Chang SM, Valk PE, Pounds TR, Prados MD (1997) 18-Fluorodeoxyglucose uptake and survival of patients with suspected recurrent malignant glioma. Cancer 79:115–126

    Article  CAS  PubMed  Google Scholar 

  5. Baron JC, Lebrun-Grandie P, Collard P, Crouzel C, Mestelan G, Bousser MG (1982) Noninvasive measurement of blood flow, oxygen consumption, and glucose utilization in the same brain regions in man by positron emission tomography: concise communication. J Nucl Med 23:391–399

    CAS  PubMed  Google Scholar 

  6. Brunnstrom H, Gustafson L, Passant U, Englund E (2009) Prevalence of dementia subtypes: a 30-year retrospective survey of neuropathological reports. Arch Gerontol Geriatr 49:146–149

    Article  PubMed  Google Scholar 

  7. Chen W, Silverman DH, Delaloye S, Czernin J, Kamdar N, Pope W, Satyamurthy N, Schiepers C, Cloughesy T (2006) 18 F-FDOPA PET imaging of brain tumors: comparison study with 18 F-FDG PET and evaluation of diagnostic accuracy. J Nucl Med 47:904–911

    CAS  PubMed  Google Scholar 

  8. Chetelat G, Desgranges B, Landeau B, Mezenge F, Poline JB, Sayette V de la, Viader F, Eustache F, Baron JC (2008) Direct voxel-based comparison between grey matter hypometabolism and atrophy in Alzheimer’s disease. Brain 131:60–71

    Article  CAS  PubMed  Google Scholar 

  9. Derlon JM, Bourdet C, Bustany P, Chatel M, Theron J, Darcel F, Syrota A (1989) (11 C)L-methionine uptake in gliomas. Neurosurgery 25:720–728

    Article  CAS  PubMed  Google Scholar 

  10. Di Chiro G, DeLaPaz RL, Brooks RA, Sokoloff L, Kornblith PL, Smith BH, Patronas NJ, Kufta CV, Kessler RM, Johnston GS, Manning RG, Wolf AP (1982) Glucose utilization of cerebral gliomas measured by [18 F] fluorodeoxyglucose and positron emission tomography. Neurology 32:1323–1329

    Article  PubMed  Google Scholar 

  11. Drzezga A (2010) Amyloid-plaque imaging in early and differential diagnosis of dementia. Ann Nucl Med 24:55–66

    Article  PubMed  Google Scholar 

  12. Drzezga A, Lautenschlager N, Siebner H, Riemenschneider M, Willoch F, Minoshima S, Schwaiger M, Kurz A (2003) Cerebral metabolic changes accompanying conversion of mild cognitive impairment into Alzheimer’s disease: a PET follow-up study. Eur J Nucl Med Mol Imaging 30:1104–1113

    Article  PubMed  Google Scholar 

  13. Förster S, Grimmer T, Miederer I, Henriksen G, Yousefi BH, Graner P, Wester HJ, Forstl H, Kurz A, Dickerson BC, Bartenstein P, Drzezga A (2012) Regional expansion of hypometabolism in Alzheimer’s disease follows amyloid deposition with temporal delay. Biol Psychiatry 71:792–797

    Article  PubMed  Google Scholar 

  14. Foster NL, Heidebrink JL, Clark CM, Jagust WJ, Arnold SE, Barbas NR, DeCarli CS, Turner RS, Koeppe RA, Higdon R, Minoshima S (2007) FDG-PET improves accuracy in distinguishing frontotemporal dementia and Alzheimer’s disease. Brain 130:2616–2635

    Article  PubMed  Google Scholar 

  15. Galldiks N, Dunkl V, Stoffels G, Hutterer M, Rapp M, Sabel M, Reifenberger G, Kebir S, Dorn F, Blau T, Herrlinger U, Hau P, Ruge MI, Kocher M, Goldbrunner R, Fink GR, Drzezga A, Schmidt M, Langen KJ (2015) Diagnosis of pseudoprogression in patients with glioblastoma using O‑(2-[18 F]fluoroethyl)-L-tyrosine PET. Eur J Nucl Med Mol Imaging 42:685–695

    Article  CAS  PubMed  Google Scholar 

  16. Galldiks N, Langen KJ, Holy R, Pinkawa M, Stoffels G, Nolte KW, Kaiser HJ, Filss CP, Fink GR, Coenen HH, Eble MJ, Piroth MD (2012) Assessment of treatment response in patients with glioblastoma using O‑(2-18 F-fluoroethyl)-L-tyrosine PET in comparison to MRI. J Nucl Med 53:1048–1057

    Article  CAS  PubMed  Google Scholar 

  17. Galldiks N, Rapp M, Stoffels G, Fink GR, Shah NJ, Coenen HH, Sabel M, Langen KJ (2013) Response assessment of bevacizumab in patients with recurrent malignant glioma using [18 F]Fluoroethyl-L-tyrosine PET in comparison to MRI. Eur J Nucl Med Mol Imaging 40:22–33

    Article  CAS  PubMed  Google Scholar 

  18. Grosu AL, Weber WA, Franz M, Stark S, Piert M, Thamm R, Gumprecht H, Schwaiger M, Molls M, Nieder C (2005) Reirradiation of recurrent high-grade gliomas using amino acid PET (SPECT)/CT/MRI image fusion to determine gross tumor volume for stereotactic fractionated radiotherapy. Int J Radiat Oncol Biol Phys 63:511–519

    Article  CAS  PubMed  Google Scholar 

  19. Hatashita S, Yamasaki H, Suzuki Y, Tanaka K, Wakebe D, Hayakawa H (2014) (18 F)Flutemetamol amyloid-beta PET imaging compared with (11 C)PIB across the spectrum of Alzheimer’s disease. Eur J Nucl Med Mol Imaging 41:290–300

    Article  CAS  PubMed  Google Scholar 

  20. Hellwig S, Amtage F, Kreft A, Buchert R, Winz OH, Vach W, Spehl TS, Rijntjes M, Hellwig B, Weiller C, Winkler C, Weber WA, Tuscher O, Meyer PT (2012) [(1)(8)F]FDG-PET is superior to [(1)(2)(3)I]IBZM-SPECT for the differential diagnosis of parkinsonism. Neurology 79:1314–1322

    Article  CAS  PubMed  Google Scholar 

  21. Hutterer M, Nowosielski M, Putzer D, Jansen NL, Seiz M, Schocke M, McCoy M, Gobel G, Fougere C la, Virgolini IJ, Trinka E, Jacobs AH, Stockhammer G (2013) 18 F]-fluoro-ethyl-L-tyrosine PET: a valuable diagnostic tool in neuro-oncology, but not all that glitters is glioma. Neuro Oncol 15:341–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ishiwata K, Kubota K, Murakami M, Kubota R, Sasaki T, Ishii S, Senda M (1993) Re-evaluation of amino acid PET studies: can the protein synthesis rates in brain and tumor tissues be measured in vivo? J Nucl Med 34:1936–1943

    CAS  PubMed  Google Scholar 

  23. James OG, Doraiswamy PM, Borges-Neto S (2015) PET imaging of tau pathology in Alzheimer’s disease and tauopathies. Front Neurol 6:38

    Article  PubMed  PubMed Central  Google Scholar 

  24. Jansen NL, Graute V, Armbruster L, Suchorska B, Lutz J, Eigenbrod S, Cumming P, Bartenstein P, Tonn JC, Kreth FW, Fougere C la (2012) MRI-suspected low-grade glioma: is there a need to perform dynamic FET PET? Eur J Nucl Med Mol Imaging 39:1021–1029

    Article  CAS  PubMed  Google Scholar 

  25. Jansen NL, Suchorska B, Schwarz SB, Eigenbrod S, Lutz J, Graute V, Bartenstein P, Belka C, Kreth FW, Fougere C la (2013) [18 F]fluoroethyltyrosine-positron emission tomography-based therapy monitoring after stereotactic iodine-125 brachytherapy in patients with recurrent high-grade glioma. Mol Imaging 12:137–147

    CAS  PubMed  Google Scholar 

  26. Johnson KA, Minoshima S, Bohnen NI, Donohoe KJ, Foster NL, Herscovitch P, Karlawish JH, Rowe CC, Carrillo MC, Hartley DM, Hedrick S, Pappas V, Thies WH (2013) Appropriate use criteria for amyloid PET: a report of the Amyloid Imaging Task Force, the Society of Nuclear Medicine and Molecular Imaging, and the Alzheimer’s Association. J Nucl Med 54:476–490

    Article  CAS  PubMed  Google Scholar 

  27. Klunk WE, Engler H, Nordberg A, Wang Y, Blomqvist G, Holt DP, Bergstrom M, Savitcheva I, Huang GF, Estrada S, Ausen B, Debnath ML, Barletta J, Price JC, Sandell J, Lopresti BJ, Wall A, Koivisto P, Antoni G, Mathis CA, Langstrom B (2004) Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann Neurol 55:306–319

    Article  CAS  PubMed  Google Scholar 

  28. Kumar AJ, Leeds NE, Fuller GN, Van Tassel P, Maor MH, Sawaya RE, Levin VA (2000) Malignant gliomas: MR imaging spectrum of radiation therapy- and chemotherapy-induced necrosis of the brain after treatment. Radiology 217:377–384

    Article  CAS  PubMed  Google Scholar 

  29. Fougere C la, Suchorska B, Bartenstein P, Kreth FW, Tonn JC (2011) Molecular imaging of gliomas with PET: opportunities and limitations. Neuro Oncol 13:806–819

    Article  PubMed  PubMed Central  Google Scholar 

  30. Langen KJ, Ziemons K, Kiwit JC, Herzog H, Kuwert T, Bock WJ, Stocklin G, Feinendegen LE, Muller-Gartner HW (1997) 3‑[123I]iodo-alpha-methyltyrosine and [methyl-11 C]-L-methionine uptake in cerebral gliomas: a comparative study using SPECT and PET. J Nucl Med 38:517–522

    CAS  PubMed  Google Scholar 

  31. Marek K, Seibyl J, Eberly S, Oakes D, Shoulson I, Lang AE, Hyson C, Jennings D (2014) Longitudinal follow-up of SWEDD subjects in the PRECEPT Study. Neurology 82:1791–1797

    Article  PubMed  PubMed Central  Google Scholar 

  32. Marshall VL, Reininger CB, Marquardt M, Patterson J, Hadley DM, Oertel WH, Benamer HT, Kemp P, Burn D, Tolosa E, Kulisevsky J, Cunha L, Costa D, Booij J, Tatsch K, Chaudhuri KR, Ulm G, Pogarell O, Hoffken H, Gerstner A, Grosset DG (2009) Parkinson’s disease is overdiagnosed clinically at baseline in diagnostically uncertain cases: a 3‑year European multicenter study with repeat [123I]FP-CIT SPECT. Mov Disord 24:500–508

    Article  PubMed  Google Scholar 

  33. Minoshima S, Giordani B, Berent S, Frey KA, Foster NL, Kuhl DE (1997) Metabolic reduction in the posterior cingulate cortex in very early Alzheimer’s disease. Ann Neurol 42:85–94

    Article  CAS  PubMed  Google Scholar 

  34. Moulin-Romsee G, D’Hondt E, Groot T de, Goffin J, Sciot R, Mortelmans L, Menten J, Bormans G, Van Laere K (2007) Non-invasive grading of brain tumours using dynamic amino acid PET imaging: does it work for 11 C-methionine? Eur J Nucl Med Mol Imaging 34:2082–2087

    Article  PubMed  Google Scholar 

  35. Niyazi M, Geisler J, Siefert A, Schwarz SB, Ganswindt U, Garny S, Schnell O, Suchorska B, Kreth FW, Tonn JC, Bartenstein P, Fougere C la, Belka C (2011) FET-PET for malignant glioma treatment planning. Radiother Oncol 99:44–48

    Article  PubMed  Google Scholar 

  36. Okamura N, Arai H, Higuchi M, Tashiro M, Matsui T, Hu XS, Takeda A, Itoh M, Sasaki H (2001) [18 F]FDG-PET study in dementia with Lewy bodies and Alzheimer’s disease. Prog Neuropsychopharmacol Biol Psychiatry 25:447–456

    Article  CAS  PubMed  Google Scholar 

  37. Pauleit D, Floeth F, Hamacher K, Riemenschneider MJ, Reifenberger G, Muller HW, Zilles K, Coenen HH, Langen KJ (2005) O‑(2-[18 F]fluoroethyl)-L-tyrosine PET combined with MRI improves the diagnostic assessment of cerebral gliomas. Brain 128:678–687

    Article  PubMed  Google Scholar 

  38. Pauleit D, Stoffels G, Bachofner A, Floeth FW, Sabel M, Herzog H, Tellmann L, Jansen P, Reifenberger G, Hamacher K, Coenen HH, Langen KJ (2009) Comparison of (18)F-FET and (18)F-FDG PET in brain tumors. Nucl Med Biol 36:779–787

    Article  CAS  PubMed  Google Scholar 

  39. Pirotte B, Acerbi F, Lubansu A, Goldman S, Brotchi J, Levivier M (2007) PET imaging in the surgical management of pediatric brain tumors. Chns Off J Int Soc Pediatr Neurosurg 23:739–751

    Article  Google Scholar 

  40. Popperl G, Kreth FW, Mehrkens JH, Herms J, Seelos K, Koch W, Gildehaus FJ, Kretzschmar HA, Tonn JC, Tatsch K (2007) FET PET for the evaluation of untreated gliomas: correlation of FET uptake and uptake kinetics with tumour grading. Eur J Nucl Med Mol Imaging 34:1933–1942

    Article  PubMed  Google Scholar 

  41. Rachinger W, Stoecklein VM, Terpolilli NA, Haug AR, Ertl L, Poschl J, Schuller U, Schichor C, Thon N, Tonn JC (2015) Increased 68 Ga-DOTATATE uptake in PET imaging discriminates meningioma and tumor-free tissue. J Nucl Med 56:347–353

    Article  CAS  PubMed  Google Scholar 

  42. Reardon DA, Wen PY (2015) Glioma in 2014: unravelling tumour heterogeneity-implications for therapy. Nat Rev Clin Oncol 12:69–70

    Article  CAS  PubMed  Google Scholar 

  43. Reubi JC, Krenning E, Lamberts SW, Kvols L (1993) In vitro detection of somatostatin receptors in human tumors. Digestion 54(Suppl 1):76–83

    PubMed  Google Scholar 

  44. Ricci PE, Karis JP, Heiserman JE, Fram EK, Bice AN, Drayer BP (1998) Differentiating recurrent tumor from radiation necrosis: time for re-evaluation of positron emission tomography? AJNR Am J Neuroradiol 19:407–413

    CAS  PubMed  Google Scholar 

  45. Sabri O, Sabbagh MN, Seibyl J, Barthel H, Akatsu H, Ouchi Y, Senda K, Murayama S, Ishii K, Takao M, Beach TG, Rowe CC, Leverenz JB, Ghetti B, Ironside JW, Catafau AM, Stephens AW, Mueller A, Koglin N, Hoffmann A, Roth K, Reininger C, Schulz-Schaeffer WJ (2015) Florbetaben PET imaging to detect amyloid beta plaques in Alzheimer’s disease: phase 3 study. Alzheimers Dement 11:964–974

    Article  PubMed  Google Scholar 

  46. Schifter T, Hoffman JM, Hanson MW, Boyko OB, Beam C, Paine S, Schold SC, Burger PC, Coleman RE (1993) Serial FDG-PET studies in the prediction of survival in patients with primary brain tumors. J Comput Assist Tomogr 17:509–561

    Article  CAS  PubMed  Google Scholar 

  47. Scott JN, Brasher PM, Sevick RJ, Rewcastle NB, Forsyth PA (2002) How often are nonenhancing supratentorial gliomas malignant? A population study. Neurology 59:947–949

    Article  CAS  PubMed  Google Scholar 

  48. Suchorska B, Jansen NL, Linn J, Kretzschmar H, Janssen H, Eigenbrod S, Simon M, Popperl G, Kreth FW, Fougere C la, Weller M, Tonn JC, German Glioma Network (2015) Biological tumor volume in 18FET-PET before radiochemotherapy correlates with survival in GBM. Neurology 84:710–719

    Article  CAS  PubMed  Google Scholar 

  49. Terakawa Y, Tsuyuguchi N, Iwai Y, Yamanaka K, Higashiyama S, Takami T, Ohata K (2008) Diagnostic accuracy of 11 C-methionine PET for differentiation of recurrent brain tumors from radiation necrosis after radiotherapy. J Nucl Med 49:694–699

    Article  PubMed  Google Scholar 

  50. Thorwarth D, Henke G, Muller AC, Reimold M, Beyer T, Boss A, Kolb A, Pichler B, Pfannenberg C (2011) Simultaneous 68 Ga-DOTATOC-PET/MRI for IMRT treatment planning for meningioma: first experience. Int J Radiat Oncol Biol Phys 81:277–283

    Article  PubMed  Google Scholar 

  51. Torii K, Tsuyuguchi N, Kawabe J, Sunada I, Hara M, Shiomi S (2005) Correlation of amino-acid uptake using methionine PET and histological classifications in various gliomas. Ann Nucl Med 19:677–683

    Article  PubMed  Google Scholar 

  52. Ullrich RT, Kracht L, Brunn A, Herholz K, Frommolt P, Miletic H, Deckert M, Heiss WD, Jacobs AH (2009) Methyl-L-11 C-methionine PET as a diagnostic marker for malignant progression in patients with glioma. J Nucl Med 50:1962–1968

    Article  PubMed  Google Scholar 

  53. Villemagne VL, Burnham S, Bourgeat P, Brown B, Ellis KA, Salvado O, Szoeke C, Macaulay SL, Martins R, Maruff P, Ames D, Rowe CC, Masters CL (2013) Amyloid beta deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer’s disease: a prospective cohort study. Lancet Neurol 12:357–367

    Article  CAS  PubMed  Google Scholar 

  54. Wester HJ, Herz M, Weber W, Heiss P, Senekowitsch-Schmidtke R, Schwaiger M, Stocklin G (1999) Synthesis and radiopharmacology of O‑(2-[18 F]fluoroethyl)-L-tyrosine for tumor imaging. J Nucl Med 40:205–212

    CAS  PubMed  Google Scholar 

  55. Yang I, Aghi MK (2009) New advances that enable identification of glioblastoma recurrence. Nat Rev Clin Oncol 6:648–657

    Article  PubMed  Google Scholar 

  56. Yang L, Rieves D, Ganley C (2012) Brain amyloid imaging-FDA approval of florbetapir F18 injection. N Engl J Med 367:885–887

    Article  CAS  PubMed  Google Scholar 

  57. Young RJ, Gupta A, Shah AD, Graber JJ, Zhang Z, Shi W, Holodny AI, Omuro AM (2011) Potential utility of conventional MRI signs in diagnosing pseudoprogression in glioblastoma. Neurology 76:1918–1924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. la Fougère.

Ethics declarations

Interessenkonflikt

M. Reimold und C. laFougère geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reimold, M., la Fougère, C. Molekulare Bildgebung bei neurologischen Erkrankungen. Radiologe 56, 580–587 (2016). https://doi.org/10.1007/s00117-016-0124-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00117-016-0124-8

Schlüsselwörter

Keywords

Navigation