Skip to main content
Log in

Axon-Reflex-basierte Nervenmessverfahren in der Diagnostik autonomer Neuropathie

Axon-reflex based nerve fiber function assessment in the detection of autonomic neuropathy

  • Aktuelles aus Diagnostik und Therapie
  • Published:
Der Nervenarzt Aims and scope Submit manuscript

Zusammenfassung

Axon-Reflex-basierte funktionelle Messverfahren kutaner Nervenfasern werden in der Diagnostik autonomer Neuropathien angewendet. Sie umfassen quantitative Methoden zur Erfassung vasomotorischer und sudomotorischer Antwortreaktionen auf die iontophoretische Applikation von Acetylcholin. Die etablierten Axon-Reflex-Messverfahren „laser Doppler flowmetry“ (LDF) zur vasomotorischen und „quantitative sudomotor axon-reflex test“ (QSART) zur sudomotorischen Funktionsmessung sind durch hohen technischen Aufwand und interindividuelle Variabilität limitiert. Sie bleiben daher in der Regel spezialisierten klinischen Zentren vorbehalten. Neue Axon-Reflex-basierte Verfahren zeichnen sich durch die Erfassung der axonalen Antwortreaktionen mit zeitlicher und zweidimensionaler Auflösung aus. Diese umfassen den „laser Doppler imaging (LDI) axon-reflex flare area test“ zur vasomotorischen, den „quantitative direct and indirect test of sudomotor function“ (QDIRT) zur sudomotorischen Funktionsmessung sowie den „quantitative pilomotor axon-reflex test“ (QPART), ein Verfahren zur Messung der pilomotorischen Nervenfunktion mithilfe adrenerger Stimulation der Haut durch Phenylephriniontophorese. Die Effektivität neuer Axon-Reflex-basierter Messverfahren in der Neuropathiediagnostik ist Gegenstand derzeitiger klinischer Prüfung.

Summary

Axon-reflex-based tests of peripheral small nerve fiber function including techniques to quantify vasomotor and sudomotor responses following acetylcholine iontophoresis are used in the assessment of autonomic neuropathy. However, the established axon-reflex-based techniques, laser Doppler flowmetry (LDF) to assess vasomotor function and quantitative sudomotor axon-reflex test (QSART) to measure sudomotor function, are limited by technically demanding settings as well as interindividual variability and are therefore restricted to specialized clinical centers. New axon-reflex tests are characterized by quantification of axon responses with both temporal and spatial resolution and include “laser Doppler imaging (LDI) axon-reflex flare area test” to assess vasomotor function, the quantitative direct and indirect test of sudomotor function (QDIRT) to quantify sudomotor function, as well as the quantitative pilomotor axon-reflex test (QPART), a technique to measure pilomotor nerve fiber function using adrenergic cutaneous stimulation through phenylephrine iontophoresis. The effectiveness of new axon-reflex tests in the assessment of neuropathy is currently being investigated in clinical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Freeman R (2005) Autonomic peripheral neuropathy. Lancet 365:1259–1270

    Article  PubMed  CAS  Google Scholar 

  2. Siepmann T, Penzlin AI, Illigens BM (2013) Autonomic neuropathies. Dtsch Med Wochenschr 138:1465–1469

    Article  PubMed  CAS  Google Scholar 

  3. Dimitropoulos G, Tahrani AA, Stevens MJ (2014) Cardiac autonomic neuropathy in patients with diabetes mellitus. World J Diabetes 5:17–39

    Article  PubMed  PubMed Central  Google Scholar 

  4. Maser RF, Mitchell BD, Vinik AI et al (2003) The association between cardiovascular autonomic neuropathy and mortality in individuals with diabetes: a meta-analysis. Diabetes Care 26:1895–1901

    Article  PubMed  Google Scholar 

  5. Figueroa JJ, Dyck PJ, Laughlin RS et al (2012) Autonomic dysfunction in chronic inflammatory demyelinating polyradiculoneuropathy. Neurology 78:702–708

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Axelrod FB (2002) Hereditary sensory and autonomic neuropathies: familial dysautonomia and other HSANs. Clin Auton Res 12:I2–I14

    Article  PubMed  Google Scholar 

  7. Houlden H, Smith S, Carvalho M de et al (2002) Clinical and genetic characterization of families with triple A (Allgrove) syndrome. Brain 125:2681–2690

    Article  PubMed  Google Scholar 

  8. Cable WJ, Kolodny EH, Adams RD (1982) Fabry disease: impaired autonomic function. Neurology 32:498–502

    Article  PubMed  CAS  Google Scholar 

  9. Falk RH, Comenzo RL, Skinner M (1997) The systemic amyloidoses. N Engl J Med 337:898–909

    Article  PubMed  CAS  Google Scholar 

  10. Freeman R, Roberts MS, Friedman LS, Broadbridge C (1990) Autonomic function and human immunodeficiency virus infection. Neurology 40:575–580

    Article  PubMed  CAS  Google Scholar 

  11. LeWitt PA (1980) The neurotoxicity of the rat poison vacor: a clinical study of 12 cases. N Engl J Med 302:73–77

    Article  PubMed  CAS  Google Scholar 

  12. Pearn J (2001) Neurology of ciguatera. J Neurol Neurosurg Psychiatry 70:4–8

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Siepmann T, Penzlin AI, Illigens BM (2013) Autonomic neuropathy – diagnosis and evidence based treatment. Dtsch Med Wochenschr 138:1529–1532

    Article  PubMed  CAS  Google Scholar 

  14. Ziemssen T, Reichmann H (2011) Cardiovascular autonomic testing in extrapyramidal disorders. J Neurol Sci 310:129–132

    Article  PubMed  Google Scholar 

  15. Low P, Tomalia VA, Park KJ (2013) Autonomic function tests: some clinical applications. J Clin Neurol 9:1–8

    Article  PubMed  PubMed Central  Google Scholar 

  16. Langley JN (1900) On axon-reflexes in the pre-ganglionic fiber of the sympathetic system. J Physiol (London) 25:364–398

  17. Berghoff M, Kathpal M, Kilo S et al (2002) Vascular and neural mechanisms of ACh-mediated vasodilation in the forearm cutaneous microcirculation. J Appl Physiol 92:780–788

    PubMed  CAS  Google Scholar 

  18. Kilo S, Berghoff M, Hilz M et al (2000) Neural and endothelial control of the microcirculation in diabetic peripheral neuropathy. Neurology 54:1246–1252

    Article  PubMed  CAS  Google Scholar 

  19. Benarroch EE, Low PA (1991) The acetylcholine-induced flare response in evaluation of small fiber dysfunction. Ann Neurol 29:590–595

    Article  PubMed  CAS  Google Scholar 

  20. Low P, Neumann C, Dyck PJ et al (1983) Evaluation of skin vasomotor reflexes by using laser Doppler velocimetry. Mayo Clin Proc 58:583–592

    PubMed  CAS  Google Scholar 

  21. Low PA, Caskey PE, Tuck RR et al (1983) Quantitative sudomotor axon reflex test in normal and neuropathic subjects. Ann Neurol 14:573–580

    Article  PubMed  CAS  Google Scholar 

  22. Low VA, Sandroni P, Fealey RD et al (2006) Detection of small-fiber neuropathy by sudomotor testing. Muscle Nerve 34:57–61

    Article  PubMed  Google Scholar 

  23. Illigens BM, Gibbons CH (2009) Sweat testing to evaluate autonomic function. Clin Auton Res 19:79–87

    Article  PubMed  PubMed Central  Google Scholar 

  24. Bickel A, Kramer HH, Hilz MJ et al (2002) Assessment of the neurogenic flare reaction in small-fiber neuropathies. Neurology 59:917–919

    Article  PubMed  CAS  Google Scholar 

  25. Green AQ, Krishnan ST, Rayman G (2009) C-fiber function assessed by the laser doppler imager flare technique and acetylcholine iontophoresis. Muscle Nerve 40:985–991

    Article  PubMed  Google Scholar 

  26. Nabavi Nouri M, Ahmed A, Bril V et al (2012) Diabetic neuropathy and axon reflex-mediated neurogenic vasodilatation in type 1 diabetes. PLoS One 7:e34807

    Article  Google Scholar 

  27. Illigens BM, Siepmann T, Roofeh J et al (2013) Laser-doppler imaging in the detection of peripheral neuropathy. Auton Neurosci 177:286–290

    Article  PubMed  PubMed Central  Google Scholar 

  28. Gibbons CH, Illigens BM, Centi J et al (2008) QDIRT: quantitative direct and indirect test of sudomotor function. Neurology 70:2299–2304

    Article  PubMed  PubMed Central  Google Scholar 

  29. Siepmann T, Gibbons C, Lafo J et al (2012) Quantitative pilomotor axon-reflex test – a novel test of pilomotor function. Arch Neurol 69:1488–1492

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. T. Siepmann, B.M.-W. Illigens, H. Reichmann und T. Ziemssen gibt an, dass kein Interessenkonflikt besteht. Der Beitrag enthält keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Siepmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siepmann, T., Illigens, BW., Reichmann, H. et al. Axon-Reflex-basierte Nervenmessverfahren in der Diagnostik autonomer Neuropathie. Nervenarzt 85, 1309–1314 (2014). https://doi.org/10.1007/s00115-014-4120-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00115-014-4120-9

Schlüsselwörter

Keywords

Navigation