Skip to main content

Advertisement

Log in

Sweat testing to evaluate autonomic function

  • REVIEW ARTICLE
  • Published:
Clinical Autonomic Research Aims and scope Submit manuscript

Abstract

Sudomotor dysfunction is common in many subtypes of neuropathy but is one of the earliest detectable neurophysiologic abnormalities in distal small fiber neuropathy. Clinical assessments of sudomotor function include thermoregulatory sweat testing (TST), quantitative sudomotor axon reflex testing (QSART), silicone impressions, the sympathetic skin response (SSR), the acetylcholine sweat-spot test and quantitative direct and indirect axon reflex testing (QDIRT). These testing techniques, when used in combination, can detect and localize pre- and postganglionic lesions, can provide early diagnosis of sudomotor dysfunction and can monitor disease progression or disease recovery. In this article, we describe many of the common clinical tests available for evaluation of sudomotor function with focus on the testing methodology and limitations while providing concrete examples of test results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Berghoff M, Kilo S, Hilz MJ, Freeman R (2006) Differential impairment of the sudomotor and nociceptor axon-reflex in diabetic peripheral neuropathy. Muscle Nerve 33:494–499

    Article  PubMed  Google Scholar 

  2. Boulant JA (1981) Hypothalamic mechanisms in thermoregulation. Fed Proc 40:2843–2850

    PubMed  CAS  Google Scholar 

  3. Caccia MR, Dezuanni E, Salvaggio A, Osio M, Bevilacqua M, Norbiato G, Mangoni A (1991) Sympathetic skin response versus maximum motor and sensory conduction velocity to detect subclinical neuropathy in non- insulin-dependent diabetics. Acta Neurologica Belgica 91:213–222

    PubMed  CAS  Google Scholar 

  4. Dawson ME, Rissling AJ, Schell AM, Wilcox R (2007) Under what conditions can human affective conditioning occur without contingency awareness? Test of the evaluative conditioning paradigm. Emotion 7:755–766

    Article  PubMed  Google Scholar 

  5. Edelberg R (1977) Relation of electrical properties of skin to structure and physiologic state. J Invest Dermatol 69:324–327

    Article  PubMed  CAS  Google Scholar 

  6. Elie B, Guiheneuc P (1990) Sympathetic skin response: normal results in different experimental conditions. Electroencephal Clin Neurophysiol 76:258–267

    Article  CAS  Google Scholar 

  7. Fagius J, Wallin BG (1980) Sympathetic reflex latencies and conduction velocities in normal man. J Neurol Sci 47:433–448

    Article  PubMed  CAS  Google Scholar 

  8. Fealey RD (2008) Thermoregulatory sweat test. In: Low PA, Benarroch EE (eds) Clinical autonomic disorders: evaluation and management. Lippincott Williams & Wilkins, Philadelphia, pp 261–281

    Google Scholar 

  9. Fealey RD, Low PA, Thomas JE (1989) Thermoregulatory sweating abnormalities in diabetes mellitus. Mayo Clinic Proc 64:617–628

    CAS  Google Scholar 

  10. Gibbons C, Freeman R (2004) The evaluation of small fiber function-autonomic and quantitative sensory testing. Neurol Clin 22:683–702

    Article  PubMed  Google Scholar 

  11. Gibbons CH, Illigens BM, Centi J, Freeman R (2008) QDIRT: quantitative direct and indirect test of sudomotor function. Neurology 70:2299–2304

    Article  PubMed  Google Scholar 

  12. Guttman L, Silver J, Wyndham CH (1958) Thermoregulation in spinal man. J Physiol 142:406–419

    Google Scholar 

  13. Hilz MJ, Stemper B, Axelrod FB (1999) Sympathetic skin response differentiates hereditary sensory autonomic neuropathies III and IV. Neurology 52:1652–1657

    PubMed  CAS  Google Scholar 

  14. Hoeldtke RD, Davis KM, Hshieh PB, Gaspar SR, Dworkin GE (1992) Autonomic surface potential analysis: assessment of reproducibility and sensitivity. Muscle Nerve 15:926–931

    Article  PubMed  CAS  Google Scholar 

  15. Kennedy WR, Sakuta M, Sutherland D, Goetz FC (1984) Quantitation of the sweating deficiency in diabetes mellitus. Ann Neurol 15:482–488

    Article  PubMed  CAS  Google Scholar 

  16. Kennedy WR, Sakuta M, Sutherland D, Goetz FC (1984) The sweating deficiency in diabetes mellitus: methods of quantitation and clinical correlation. Neurology 34:758–763

    PubMed  CAS  Google Scholar 

  17. Kihara M, Opfer-Gehrking TL, Low PA (1993) Comparison of directly stimulated with axon reflex-mediated sudomotor responses in human subjects and in patients with diabetes. Muscle Nerve 16:655–660

    Article  PubMed  CAS  Google Scholar 

  18. Knezevic W, Bajada S (1985) Peripheral autonomic surface potential. A quantitative technique for recording sympathetic conduction in man. J Neurol Sci 67:239–251

    Article  PubMed  CAS  Google Scholar 

  19. Knezevic W, Bajada S (1985) Peripheral autonomic surface potential: a quantitative technique for recording autonomic neural function in man. Clin Exp Neurol 21:201–210

    PubMed  CAS  Google Scholar 

  20. Lader MH, Montagu JD (1962) The psycho-galvanic reflex: a pharmacological study of the peripheral mechanism. J Neurol Neurosurg Psychiatry 25:126–133

    Article  PubMed  CAS  Google Scholar 

  21. Linden D, Berlit P (1995) Sympathetic skin responses (SSRs) in monofocal brain lesions: topographical aspects of central sympathetic pathways. Acta Neurol Scand 91:372–376

    Article  PubMed  CAS  Google Scholar 

  22. Low PA (2004) Evaluation of sudomotor function. Clin Neurophysiol 115:1506–1513

    Article  PubMed  Google Scholar 

  23. Low PA (1993) Pitfalls in autonomic testing. In: Clinical autonomic disorders: evaluation and management. Little, Brown and Company, Boston, pp 355–365

  24. Low PA (2003) Testing the autonomic nervous system. Semin Neurol 23:407–421

    Article  PubMed  Google Scholar 

  25. Low PA, Caskey PE, Tuck RR, Fealey RD, Dyck PJ (1983) Quantitative sudomotor axon reflex test in normal and neuropathic subjects. Ann Neurol 14:573–580

    Article  PubMed  CAS  Google Scholar 

  26. Low PA, Dyck PJ (1978) Splanchnic preganglionic neurons in man. III. Morphometry of myelinated fibers of rami communicantes. J Neuropathol Exp Neurol 37:734–740

    Article  PubMed  CAS  Google Scholar 

  27. Low PA, Dyck PJ (1977) Splanchnic preganglionic neurons in man: II. Morphometry of myelinated fibers of T7 ventral spinal root. Acta Neuropathologica 40:219–225

    Article  PubMed  CAS  Google Scholar 

  28. Low PA, Fealey RD, Sheps SG, Su WP, Trautmann JC, Kuntz NL (1985) Chronic idiopathic anhidrosis. Ann Neurol 18:344–348

    Article  PubMed  CAS  Google Scholar 

  29. Low PA, Okazaki H, Dyck PJ (1977) Splanchnic preganglionic neurons in man. I. Morphometry of preganglionic cytons. Acta Neuropathologica 40:55–61

    Article  PubMed  CAS  Google Scholar 

  30. Low VA, Sandroni P, Fealey RD, Low PA (2006) Detection of small-fiber neuropathy by sudomotor testing. Muscle Nerve 34:57–61

    Article  PubMed  Google Scholar 

  31. Mandikos MN (1998) Polyvinyl siloxane impression materials: an update on clinical use. Aust Dental J 43:428–434

    Article  CAS  Google Scholar 

  32. Meijer EH, Smulders FT, Johnston JE, Merckelbach HL (2007) Combining skin conductance and forced choice in the detection of concealed information. Psychophysiology 44:814–822

    Article  PubMed  Google Scholar 

  33. Namer B, Bickel A, Kramer H, Birklein F, Schmelz M (2004) Chemically and electrically induced sweating and flare reaction. Auton Neurosci 114:72–82

    Article  PubMed  Google Scholar 

  34. Ryder RE, Marshall R, Johnson K, Ryder AP, Owens DR, Hayes TM (1988) Acetylcholine sweatspot test for autonomic denervation. Lancet 1:1303–1305

    Article  PubMed  CAS  Google Scholar 

  35. Sato K, Dobson RL (1970) Regional and individual variations in the function of the human eccrine sweat gland. J Invest Dermatol 54:443–449

    Article  PubMed  CAS  Google Scholar 

  36. Schmidt KD, Chan CW (1992) Thermoregulation and fever in normal persons and in those with spinal cord injuries. Mayo Clin Proc 67:469–475

    PubMed  CAS  Google Scholar 

  37. Shahani BT, Halperin JJ, Boulu P, Cohen J (1984) Sympathetic skin response–a method of assessing unmyelinated axon dysfunction in peripheral neuropathies. J Neurol Neurosurg Psychiatry 47:536–542

    Article  PubMed  CAS  Google Scholar 

  38. Stewart JD, Nguyen DM, Abrahamowicz M (1994) Quantitative sweat testing using acetylcholine for direct and axon reflex mediated stimulation with silicone mold recording; controls versus neuropathic diabetics. Muscle Nerve 17:1370–1377

    Article  PubMed  CAS  Google Scholar 

  39. Uncini A, Pullman SL, Lovelace RE, Gambi D (1988) The sympathetic skin response: normal values, elucidation of afferent components and application limits. J Neurol Sci 87:299–306

    Article  PubMed  CAS  Google Scholar 

  40. Vetrugno R, Liguori R, Cortelli P, Montagna P (2003) Sympathetic skin response: basic mechanisms and clinical applications. Clin Auton Res 13:256–270

    Article  PubMed  Google Scholar 

  41. Vilches JJ, Navarro X (2002) New silicones for the evaluation of sudomotor function with the impression mold technique. Clin Auton Res 12:20–23

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher H. Gibbons MD, MMSc.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Illigens, B.M.W., Gibbons, C.H. Sweat testing to evaluate autonomic function. Clin Auton Res 19, 79–87 (2009). https://doi.org/10.1007/s10286-008-0506-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10286-008-0506-8

Keywords

Navigation