Skip to main content
Log in

Klotho suppresses high phosphate-induced osteogenic responses in human aortic valve interstitial cells through inhibition of Sox9

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Elevated level of blood phosphate (Pi) associated with chronic kidney disease (CKD) is a risk factor of aortic valve calcification. Aortic valve interstitial cells (AVICs) display osteogenic responses to high Pi although the underlying mechanism is incompletely understood. Sox9 is a pro-chondrogenic factor and may play a role in ectopic tissue calcification. Circulating and kidney levels of Klotho are reduced in patients with CKD. We hypothesized that Sox9 mediates high Pi-induced osteogenic responses in human AVICs and that Klotho inhibits the responses. Treatment of human AVICs with high Pi increased protein levels of Runt-related transcription factor 2 (Runx2) and alkaline phosphatase (ALP), and a prolonged exposure to high Pi caused calcium deposition. High Pi induced Sox9 upregulation through PKD and Akt activation. Knockdown of Sox9 essentially abolished the effect of high Pi on the osteogenic responses. Lower Klotho levels were observed in calcified aortic valve tissues. Interestingly, high Pi decreased Klotho levels in AVICs from normal valves, and treatment with recombinant Klotho markedly reduced the effect of high Pi on the levels of Sox9, Runx2, and ALP and suppressed calcium deposition. We conclude that high Pi induces human AVIC osteogenic responses through Sox9. Human AVICs express Klotho, and its levels in AVICs are modulated by high Pi and valvular calcification. Importantly, Klotho suppresses the pro-osteogenic effect of high Pi on human AVICs. These novel findings indicate that modulation of Klotho may have therapeutic potential for mitigation of valvular calcification associated with CKD.

Key messages

  • CAVD associated with chronic kidney disease is a significant clinical problem.

  • High phosphate upregulates Sox9 through AKT and PKD in human AVICs.

  • Calcified human aortic valves have lower levels of Klotho.

  • Klotho suppresses Sox9 upregulation and intranuclear translocation.

  • Klotho inhibits high phosphate-induced osteogenic activity in human AVICs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Iung B, Baron G, Butchart EG, Delahaye F, Gohlke-Barwolf C, Levang OW, Tornos P, Vanoverschelde JL, Vermeer F, Boersma E et al (2003) A prospective survey of patients with valvular heart disease in Europe: the euro heart survey on valvular heart disease. Eur Heart J 24:1231–1243

    Article  PubMed  Google Scholar 

  2. Nkomo VT, Gardin JM, Skelton TN, Gottdiener JS, Scott CG, Enriquez-Sarano M (2006) Burden of valvular heart diseases: a population-based study. Lancet 368:1005–1011

    Article  PubMed  Google Scholar 

  3. Rattazzi M, Bertacco E, Del Vecchio A, Puato M, Faggin E, Pauletto P (2013) Aortic valve calcification in chronic kidney disease. Nephrol Dial Transplant 28:2968–2976

    Article  CAS  PubMed  Google Scholar 

  4. Lau WL, Pai A, Moe SM, Giachelli CM (2011) Direct effects of phosphate on vascular cell function. Adv Chronic Kidney Dis 18:105–112

    Article  PubMed  PubMed Central  Google Scholar 

  5. Seya K, Furukawa K, Chiyoya M, Yu Z, Kikuchi H, Daitoku K, Motomura S, Murakami M, Oshima Y, Fukuda I (2016) 1-Methyl-2-undecyl-4(1H)-quinolone, a derivative of quinolone alkaloid evocarpine, attenuates high phosphate-induced calcification of human aortic valve interstitial cells by inhibiting phosphate cotransporter PiT-1. J Pharmacol Sci 131:51–57

    Article  CAS  PubMed  Google Scholar 

  6. Liu AC, Joag VR, Gotlieb AI (2007) The emerging role of valve interstitial cell phenotypes in regulating heart valve pathobiology. Am J Pathol 171:1407–1418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Towler DA (2013) Molecular and cellular aspects of calcific aortic valve disease. Circ Res 113:198–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Neven E, Persy V, Dauwe S, De Schutter T, De Broe ME, D’Haese PC (2010) Chondrocyte rather than osteoblast conversion of vascular cells underlies medial calcification in uremic rats. Arterioscler Thromb Vasc Biol 30:1741–1750

    Article  CAS  PubMed  Google Scholar 

  9. Xu Z, Ji G, Shen J, Wang X, Zhou J, Li L (2012) SOX9 and myocardin counteract each other in regulating vascular smooth muscle cell differentiation. Biochem Biophys Res Commun 422:285–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Peacock JD, Levay AK, Gillaspie DB, Tao G, Lincoln J (2010) Reduced sox9 function promotes heart valve calcification phenotypes in vivo. Circ Res 106:712–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Liao J, Hu N, Zhou N, Lin L, Zhao C, Yi S, Fan T, Bao W, Liang X, Chen H et al (2014) Sox9 potentiates BMP2-induced chondrogenic differentiation and inhibits BMP2-induced osteogenic differentiation. PLoS One 9:e89025

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kuro-o M, Matsumura Y, Aizawa H, Kawaguchi H, Suga T, Utsugi T, Ohyama Y, Kurabayashi M, Kaname T, Kume E et al (1997) Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 390:45–51

    Article  CAS  PubMed  Google Scholar 

  13. Hu MC, Shi M, Zhang J, Pastor J, Nakatani T, Lanske B, Razzaque MS, Rosenblatt KP, Baum MG, Kuro-o M et al (2010) Klotho: a novel phosphaturic substance acting as an autocrine enzyme in the renal proximal tubule. FASEB J 24:3438–3450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kuro-o M (2013) Klotho, phosphate and FGF-23 in ageing and disturbed mineral metabolism. Nat Rev Nephrol 9:650–660

    Article  CAS  PubMed  Google Scholar 

  15. Kato Y, Arakawa E, Kinoshita S, Shirai A, Furuya A, Yamano K, Nakamura K, Iida A, Anazawa H, Koh N et al (2000) Establishment of the anti-Klotho monoclonal antibodies and detection of Klotho protein in kidneys. Biochem Biophys Res Commun 267:597–602

    Article  CAS  PubMed  Google Scholar 

  16. Gomez-Stallons MV, Wirrig-Schwendeman EE, Hassel KR, Conway SJ, Yutzey KE (2016) Bone morphogenetic protein signaling is required for aortic valve calcification. Arterioscler Thromb Vasc Biol 36:1398–1405

    Article  CAS  PubMed  Google Scholar 

  17. Chen J, Lin Y, Sun Z (2016) Deficiency in the anti-aging gene Klotho promotes aortic valve fibrosis through AMPKalpha-mediated activation of RUNX2. Aging Cell. doi:10.1111/acel.12494

    Google Scholar 

  18. Li F, Cai Z, Chen F, Shi X, Zhang Q, Chen S, Shi J, Wang DW, Dong N (2012) Pioglitazone attenuates progression of aortic valve calcification via down-regulating receptor for advanced glycation end products. Basic Res Cardiol 107:306

    Article  PubMed  Google Scholar 

  19. Meng X, Ao L, Song Y, Babu A, Yang X, Wang M, Weyant MJ, Dinarello CA, Cleveland JC Jr, Fullerton DA (2008) Expression of functional Toll-like receptors 2 and 4 in human aortic valve interstitial cells: potential roles in aortic valve inflammation and stenosis. Am J Physiol Cell Physiol 294:C29–C35

    Article  CAS  PubMed  Google Scholar 

  20. Zeng Q, Jin C, Ao L, Cleveland JC Jr, Song R, Xu D, Fullerton DA, Meng X (2012) Cross-talk between the Toll-like receptor 4 and Notch1 pathways augments the inflammatory response in the interstitial cells of stenotic human aortic valves. Circulation 126:S222–S230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Song R, Fullerton DA, Ao L, Zheng D, Zhao KS, Meng X (2015) BMP-2 and TGF-beta1 mediate biglycan-induced pro-osteogenic reprogramming in aortic valve interstitial cells. J Mol Med (Berl) 93:403–412

    Article  CAS  Google Scholar 

  22. Song R, Zeng Q, Ao L, Yu JA, Cleveland JC, Zhao KS, Fullerton DA, Meng X (2012) Biglycan induces the expression of osteogenic factors in human aortic valve interstitial cells via Toll-like receptor-2. Arterioscler Thromb Vasc Biol 32:2711–2720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang Y, Shan J, Yang W, Zheng H, Xue S (2013) High mobility group box 1 (HMGB1) mediates high-glucose-induced calcification in vascular smooth muscle cells of saphenous veins. Inflammation 36:1592–1604

    Article  CAS  PubMed  Google Scholar 

  24. Lim K, Lu TS, Molostvov G, Lee C, Lam FT, Zehnder D, Hsiao LL (2012) Vascular Klotho deficiency potentiates the development of human artery calcification and mediates resistance to fibroblast growth factor 23. Circulation 125:2243–2255

    Article  CAS  PubMed  Google Scholar 

  25. Kauffenstein G, Pizard A, Le Corre Y, Vessieres E, Grimaud L, Toutain B, Labat C, Mauras Y, Gorgels TG, Bergen AA et al (2014) Disseminated arterial calcification and enhanced myogenic response are associated with abcc6 deficiency in a mouse model of pseudoxanthoma elasticum. Arterioscler Thromb Vasc Biol 34:1045–1056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Alesutan I, Musculus K, Castor T, Alzoubi K, Voelkl J, Lang F (2015) Inhibition of phosphate-induced vascular smooth muscle cell osteo-/chondrogenic signaling and calcification by bafilomycin A1 and methylamine. Kidney Blood Press Res 40:490–499

    Article  CAS  PubMed  Google Scholar 

  27. Zeng Q, Song R, Ao L, Weyant MJ, Lee J, Xu D, Fullerton DA, Meng X (2013) Notch1 promotes the pro-osteogenic response of human aortic valve interstitial cells via modulation of ERK1/2 and nuclear factor-kappaB activation. Arterioscler Thromb Vasc Biol 33:1580–1590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rotondi S, Pasquali M, Tartaglione L, Muci ML, Mandanici G, Leonangeli C, Sales S, Farcomeni A, Mazzaferro S (2015) Soluble alpha-Klotho serum levels in chronic kidney disease. Int J Endocrinol 2015:872193

    Article  PubMed  PubMed Central  Google Scholar 

  29. Raggi P, Boulay A, Chasan-Taber S, Amin N, Dillon M, Burke SK, Chertow GM (2002) Cardiac calcification in adult hemodialysis patients. A link between end-stage renal disease and cardiovascular disease? J Am Coll Cardiol 39:695–701

    Article  PubMed  Google Scholar 

  30. Guerraty MA, Chai B, Hsu JY, Ojo AO, Gao Y, Yang W, Keane MG, Budoff MJ, Mohler ER 3rd, Investigators CS (2015) Relation of aortic valve calcium to chronic kidney disease (from the Chronic Renal Insufficiency Cohort Study). Am J Cardiol 115:1281–1286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Aikawa E, Aikawa M, Libby P, Figueiredo JL, Rusanescu G, Iwamoto Y, Fukuda D, Kohler RH, Shi GP, Jaffer FA et al (2009) Arterial and aortic valve calcification abolished by elastolytic cathepsin S deficiency in chronic renal disease. Circulation 119:1785–1794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shroff R, Long DA, Shanahan C (2013) Mechanistic insights into vascular calcification in CKD. J Am Soc Nephrol 24:179–189

    Article  CAS  PubMed  Google Scholar 

  33. Shuvy M, Abedat S, Beeri R, Danenberg HD, Planer D, Ben-Dov IZ, Meir K, Sosna J, Lotan C (2008) Uraemic hyperparathyroidism causes a reversible inflammatory process of aortic valve calcification in rats. Cardiovasc Res 79:492–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rattazzi M, Iop L, Faggin E, Bertacco E, Zoppellaro G, Baesso I, Puato M, Torregrossa G, Fadini GP, Agostini C et al (2008) Clones of interstitial cells from bovine aortic valve exhibit different calcifying potential when exposed to endotoxin and phosphate. Arterioscler Thromb Vasc Biol 28:2165–2172

    Article  CAS  PubMed  Google Scholar 

  35. Yao Q, Song R, Ao L, Zhan Q, Cleveland JC Jr, Yu X, Fullerton DA, Meng X (2015) Over-expression of neurotrophin 3 in human aortic valves affected by calcific disease induces the osteogenic responses via the Trk-Akt pathway. Biochim Biophys Acta 1852:1940–1949

    Article  CAS  PubMed  Google Scholar 

  36. Lian JB, Javed A, Zaidi SK, Lengner C, Montecino M, van Wijnen AJ, Stein JL, Stein GS (2004) Regulatory controls for osteoblast growth and differentiation: role of Runx/Cbfa/AML factors. Crit Rev Eukaryot Gene Expr 14:1–41

    Article  CAS  PubMed  Google Scholar 

  37. Akiyama H (2008) Control of chondrogenesis by the transcription factor Sox9. Mod Rheumatol 18:213–219

    Article  CAS  PubMed  Google Scholar 

  38. Alexopoulos A, Bravou V, Peroukides S, Kaklamanis L, Varakis J, Alexopoulos D, Papadaki H (2010) Bone regulatory factors NFATc1 and Osterix in human calcific aortic valves. Int J Cardiol 139:142–149

    Article  PubMed  Google Scholar 

  39. Huk DJ, Austin BF, Horne TE, Hinton RB, Ray WC, Heistad DD, Lincoln J (2016) Valve endothelial cell-derived Tgfbeta1 signaling promotes nuclear localization of Sox9 in interstitial cells associated with attenuated calcification. Arterioscler Thromb Vasc Biol 36:328–338

    Article  CAS  PubMed  Google Scholar 

  40. Balogh E, Toth A, Tolnai E, Bodo T, Banyai E, Szabo DJ, Petrovski G, Jeney V (2016) Osteogenic differentiation of human lens epithelial cells might contribute to lens calcification. Biochim Biophys Acta 1862:1724–1731

    Article  CAS  PubMed  Google Scholar 

  41. Di Lullo L, Gorini A, Bellasi A, Morrone LF, Rivera R, Russo L, Santoboni A, Russo D (2015) Fibroblast growth factor 23 and parathyroid hormone predict extent of aortic valve calcifications in patients with mild to moderate chronic kidney disease. Clin Kidney J 8:732–736

    Article  PubMed  PubMed Central  Google Scholar 

  42. Cheek JD, Wirrig EE, Alfieri CM, James JF, Yutzey KE (2012) Differential activation of valvulogenic, chondrogenic, and osteogenic pathways in mouse models of myxomatous and calcific aortic valve disease. J Mol Cell Cardiol 52:689–700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by National Institutes of Heart, Lung, and Blood Grants HL106582 and HL121776.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianzhong Meng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 394 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, F., Yao, Q., Ao, L. et al. Klotho suppresses high phosphate-induced osteogenic responses in human aortic valve interstitial cells through inhibition of Sox9. J Mol Med 95, 739–751 (2017). https://doi.org/10.1007/s00109-017-1527-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-017-1527-3

Keywords

Navigation