Skip to main content

Advertisement

Log in

HuR mediates motility of human bone marrow-derived mesenchymal stem cells triggered by sphingosine 1-phosphate in liver fibrosis

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Sphingosine 1-phosphate (S1P) participates in migration of bone marrow (BM)-derived mesenchymal stem cells (BMSCs) toward damaged liver via upregulation of S1P receptor 3 (S1PR3) during mouse liver fibrogenesis. But, the molecular mechanism is still unclear. HuR, as an RNA-binding protein, regulates tumor cell motility. Here, we examined the role of HuR in migration of human BMSCs (hBMSCs) in liver fibrosis. Results showed that HuR messenger RNA (mRNA) level was increased in human or mouse fibrotic livers, and correlated with S1PR3 mRNA expression. Using immunofluorescence, we found that HuR mainly localized in the nuclei of hepatocytes and non-parenchymal cells in normal livers. However, in fibrotic livers, we detected an increased HuR cytoplasmic localization in non-parenchymal cells. In chimeric mice of BM cell-labeled by EGFP, significant numbers of EGFP-positive cells (BM origin) were positive for HuR in fibrotic areas. Meanwhile, HuR-positive cells were also positive for α-SMA (myofibroblasts). In vitro, S1P induced hBMSCs migration via S1PR3 upregulation. HuR involved in S1P-induced hBMSCs migration and increased stabilization of S1PR3 mRNA via competing with miR-30e. RNA immunoprecipitation showed that HuR interacted with S1PR3 mRNA 3′UTR. Moreover, S1P resulted in phosphorylation and cytoplasmic translocation of HuR via S1PR3 and p38MAPK. Furthermore, we transplanted EGFP+ BMSCs with or without HuR small interfering RNA (siRNA) into carbon tetrachloride-treated mice and found that knockdown of HuR inhibited the migration of BMSCs toward injured livers by flow cytometric analysis in vivo. We identified a positive feedback regulation mechanism between HuR and S1PR3 in S1P-induced BMSCs migration. HuR participates in upregulation of S1PR3 induced by S1P. S1P results in phosphorylation and translocation of HuR via S1PR3. Our results provide a new regulatory manner to the mechanism of liver fibrogenesis.

Key message

  • HuR expression and cytoplasmic localization were increased in fibrotic livers.

  • S1P induced migration of human bone marrow Mesenchymal Stem Cells via S1PR3 and HuR.

  • HuR regulated S1PR3 mRNA expression by binding with S1PR3 mRNA 3’UTR.

  • S1P induced HuR phosphorylation and cytoplasmic translocation via S1PR3.

  • HuR regulated S1PR3 expression by competing with miR-30e.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bataller R, Brenner DA (2005) Liver fibrosis. J Clin Invest 115:209–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Friedman SL (2008) Mechanisms of hepatic fibrogenesis. Gastroenterology 134:1655–1669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Iwaisako K, Brenner DA, Kisseleva T (2012) What’s new in liver fibrosis? The origin of myofibroblasts in liver fibrosis. J Gastroenterol Hepatol 27(Suppl 2):65–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Russo FP, Alison MR, Bigger BW, Amofah E, Florou A, Amin F, Bou Gharios G, Jeffery R, Iredale JP, Forbes SJ (2006) The bone marrow functionally contributes to liver fibrosis. Gastroenterology 130:1807–1821

    Article  PubMed  Google Scholar 

  5. Li C, Kong Y, Wang H, Wang S, Yu H, Liu X, Yang L, Jiang X, Li L, Li L (2009) Homing of bone marrow mesenchymal stem cells mediated by sphingosine 1-phosphate contributes to liver fibrosis. J Hepatol 50:1174–1183

    Article  CAS  PubMed  Google Scholar 

  6. Yang L, Chang N, Liu X, Han Z, Zhu T, Li C, Yang L, Li L (2012) Bone marrow-derived mesenchymal stem cells differentiate to hepatic myofibroblasts by transforming growth factor-beta1 via sphingosine kinase/sphingosine 1-phosphate (S1P)/S1P receptor axis. Am J Pathol 181:85–97

    Article  CAS  PubMed  Google Scholar 

  7. Schwalm S, Pfeilschifter J, Huwiler A (2013) Sphingosine-1-phosphate: a Janus-Faced Mediator of fibrotic diseases. Biochim Biophys Acta 1831:239–250

    Article  CAS  PubMed  Google Scholar 

  8. Takuwa Y, Ikeda H, Okamoto Y, Takuwa N, Yoshioka K (2013) Sphingosine-1-phosphate as a mediator involved in development of fibrotic diseases. Biochim Biophys Acta 1831:185–192

    Article  CAS  PubMed  Google Scholar 

  9. Pyne NJ, Dubois G, Pyne S (2013) Role of sphingosine 1-phosphate and lysophosphatidic acid in fibrosis. Biochim Biophys Acta 1831:228–238

    Article  CAS  PubMed  Google Scholar 

  10. Sic H, Kraus H, Madl J, Flittner KA, von Munchow AL, Pieper K, Rizzi M, Kienzler AK, Ayata K, Rauer S, et al. (2014) Sphingosine-1-phosphate receptors control B-cell migration through signaling components associated with primary immunodeficiencies, chronic lymphocytic leukemia, and multiple sclerosis. J Allergy Clin Immunol 134:420–428

    Article  CAS  PubMed  Google Scholar 

  11. Mahajan-Thakur S, Sostmann BD, Fender AC, Behrendt D, Felix SB, Schror K, Rauch BH (2014) Sphingosine-1-phosphate induces thrombin receptor PAR-4 expression to enhance cell migration and COX-2 formation in human monocytes. J Leukoc Biol 96:611–618

    Article  PubMed  Google Scholar 

  12. Li C, Jiang X, Yang L, Liu X, Yue S, Li L (2009) Involvement of sphingosine 1-phosphate (SIP)/S1P3 signaling in cholestasis-induced liver fibrosis. Am J Pathol 175:1464–1472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liu X, Yue S, Li C, Yang L, You H, Li L (2011) Essential roles of sphingosine 1-phosphate receptor types 1 and 3 in human hepatic stellate cells motility and activation. J Cell Physiol 226:2370–2377

    Article  CAS  PubMed  Google Scholar 

  14. Li C, Zheng S, You H, Liu X, Lin M, Yang L, Li L (2011) Sphingosine 1-phosphate (S1P)/S1P receptors are involved in human liver fibrosis by action on hepatic myofibroblasts motility. J Hepatol 54:1205–1213

    Article  CAS  PubMed  Google Scholar 

  15. Sanchez T, Hla T (2004) Structural and functional characteristics of S1P receptors. J Cell Biochem 92:913–922

    Article  CAS  PubMed  Google Scholar 

  16. Weichand B, Weis N, Weigert A, Grossmann N, Levkau B, Brüne B (2013) Apoptotic cells enhance sphingosine-1-phosphate receptor 1 dependent macrophage migration. Eur J Immunol 43:3306–3313

    Article  CAS  PubMed  Google Scholar 

  17. Koch A, Völzke A, Puff B, Blankenbach K, Meyer Zu Heringdorf D, Huwiler A, Pfeilschifter J (2013) PPARγ agonists upregulate sphingosine 1-phosphate (S1P) receptor 1 expression, which in turn reduces S1P-induced [Ca2+]i increases in renal mesangial cells. Biochimica et Biophys Acta (BBA) - Mol Cell Biol Lipids 1831:1634–1643

    Article  CAS  Google Scholar 

  18. Skoura A, Sanchez T, Claffey K, Mandala SM, Proia RL, Hla T (2007) Essential role of sphingosine 1-phosphate receptor 2 in pathological angiogenesis of the mouse retina. J Clin Invest 117:2506–2516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cencetti F, Bernacchioni C, Nincheri P, Donati C, Bruni P (2010) Transforming growth factor-beta1 induces transdifferentiation of myoblasts into myofibroblasts via up-regulation of sphingosine kinase-1/S1P3 axis. Mol Biol Cell 21:1111–1124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chang N, Xiu L, Li L (2014) Sphingosine 1-phosphate receptors negatively regulate collagen type I/III expression in human bone marrow-derived mesenchymal stem cell. J Cell Biochem 115:359–367

    Article  CAS  PubMed  Google Scholar 

  21. Simone LE, Keene JD (2013) Mechanisms coordinating ELAV/Hu mRNA regulons. Curr Opin Genet Dev 23:35–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Srikantan S, Gorospe M (2012) HuR function in disease. Front Biosci (Landmark Ed) 17:189–205

    Article  CAS  Google Scholar 

  23. Woodhoo A, Iruarrizaga-Lejarreta M, Beraza N, Garcia-Rodriguez JL, Embade N, Fernandez-Ramos D, Martinez-Lopez N, Gutierrez-De JV, Arteta B, Caballeria J, et al. (2012) Human antigen R contributes to hepatic stellate cell activation and liver fibrosis. Hepatology 56:1870–1882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bai D, Gao Q, Li C, Ge L, Gao Y, Wang H (2012) A conserved TGFbeta1/HuR feedback circuit regulates the fibrogenic response in fibroblasts. Cell Signal 24:1426–1432

    Article  CAS  PubMed  Google Scholar 

  25. Atasoy U, Watson J, Patel D, Keene JD (1998) ELAV protein HuA (HuR) can redistribute between nucleus and cytoplasm and is upregulated during serum stimulation and T cell activation. J Cell Sci 111(Pt 21):3145–3156

    CAS  PubMed  Google Scholar 

  26. Johann AM, Weigert A, Eberhardt W, Kuhn AM, Barra V, von Knethen A, Pfeilschifter JM, Brune B (2008) Apoptotic cell-derived sphingosine-1-phosphate promotes HuR-dependent cyclooxygenase-2 mRNA stabilization and protein expression. J Immunol 180:1239–1248

    Article  CAS  PubMed  Google Scholar 

  27. Doller A, Schlepckow K, Schwalbe H, Pfeilschifter J, Eberhardt W (2010) Tandem phosphorylation of serines 221 and 318 by protein kinase Cdelta coordinates mRNA binding and nucleocytoplasmic shuttling of HuR. Mol Cell Biol 30:1397–1410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kinoshita E (2005) Phosphate-binding tag, a new tool to visualize phosphorylated proteins. Mol Cell Proteomics 5:749–757

    Article  PubMed  Google Scholar 

  29. Ge J, Chang N, Zhao Z, Tian L, Duan X, Yang L, Li L (2016) Essential roles of RNA-binding protein HuR in activation of hepatic stellate cells induced by transforming growth factor-beta1. Sci Rep 6:22141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yi J, Chang N, Liu X, Guo G, Xue L, Tong T, Gorospe M, Wang W (2010) Reduced nuclear export of HuR mRNA by HuR is linked to the loss of HuR in replicative senescence. Nucleic Acids Res 38:1547–1558

    Article  CAS  PubMed  Google Scholar 

  31. Srikantan S, Tominaga K, Gorospe M (2012) Functional interplay between RNA-binding protein HuR and microRNAs. Curr Protein Pept Sci 13:372–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Eberhardt W, Doller A, Pfeilschifter J (2012) Regulation of the mRNA-binding protein HuR by posttranslational modification: spotlight on phosphorylation. Curr Protein Pept Sci 13:380–390

    Article  CAS  PubMed  Google Scholar 

  33. Doller A, Pfeilschifter J, Eberhardt W (2008) Signalling pathways regulating nucleo-cytoplasmic shuttling of the mRNA-binding protein HuR. Cell Signal 20:2165–2173

    Article  CAS  PubMed  Google Scholar 

  34. Doller A, Winkler C, Azrilian I, Schulz S, Hartmann S, Pfeilschifter J, Eberhardt W (2011) High-constitutive HuR phosphorylation at Ser 318 by PKC{delta} propagates tumor relevant functions in colon carcinoma cells. Carcinogenesis 32:676–685

    Article  CAS  PubMed  Google Scholar 

  35. Hsu CK, Lee IT, Lin CC, Hsiao LD, Yang CM (2015) Sphingosine-1-phosphate mediates COX-2 expression and PGE2 /IL-6 secretion via c-Src-dependent AP-1 activation. J Cell Physiol 230:702–715

    Article  CAS  PubMed  Google Scholar 

  36. Brinkmann V (2007) Sphingosine 1-phosphate receptors in health and disease: mechanistic insights from gene deletion studies and reverse pharmacology. Pharmacol Ther 115:84–105

    Article  CAS  PubMed  Google Scholar 

  37. Yiakouvaki A, Dimitriou M, Karakasiliotis I, Eftychi C, Theocharis S, Kontoyiannis DL (2012) Myeloid cell expression of the RNA-binding protein HuR protects mice from pathologic inflammation and colorectal carcinogenesis. J Clin Invest 122:48–61

    Article  CAS  PubMed  Google Scholar 

  38. Guo X, Wu Y, Hartley RS (2009) MicroRNA-125a represses cell growth by targeting HuR in breast cancer. RNA Biol 6:575–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dormoy-Raclet V, Menard I, Clair E, Kurban G, Mazroui R, Di Marco S, von Roretz C, Pause A, Gallouzi IE (2007) The RNA-binding protein HuR promotes cell migration and cell invasion by stabilizing the beta-actin mRNA in a U-rich-element-dependent manner. Mol Cell Biol 27:5365–5380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Al-Souhibani N, Al-Ghamdi M, Al-Ahmadi W, Khabar KS (2014) Posttranscriptional control of the chemokine receptor CXCR4 expression in cancer cells. Carcinogenesis 35:1983–1992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hinman MN, Lou H (2008) Diverse molecular functions of Hu proteins. Cell Mol Life Sci 65:3168–3181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhuang R, Rao JN, Zou T, Liu L, Xiao L, Cao S, Hansraj NZ, Gorospe M, Wang JY (2013) miR-195 competes with HuR to modulate stim1 mRNA stability and regulate cell migration. Nucleic Acids Res 41:7905–7919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang XW, Heegaard NH, Orum H (2012) MicroRNAs in liver disease. Gastroenterology 142:1431–1443

    Article  CAS  PubMed  Google Scholar 

  44. Sohn D, Peters D, Piekorz RP, Budach W, Janicke RU (2016) miR-30e controls DNA damage-induced stress responses by modulating expression of the CDK inhibitor p21WAF1/CIP1 and caspase-3. Oncotarget. doi:10.18632/oncotarget.7432

    Google Scholar 

  45. Zhang BW, Cai HF, Wei XF, Sun JJ, Lan XY, Lei CZ, Lin FP, Qi XL, Plath M, Chen H (2016) miR-30-5p Regulates Muscle Differentiation and Alternative Splicing of Muscle-Related Genes by Targeting MBNL. Int J Mol Sci 17:E182

    Article  PubMed  Google Scholar 

  46. Kwak SY, Kim BY, Ahn HJ, Yoo JO, Kim J, Bae IH, Han YH (2015) Ionizing radiation-inducible miR-30e promotes glioma cell invasion through EGFR stabilization by directly targeting CBL-B. Febs J 282:1512–1525

    Article  CAS  PubMed  Google Scholar 

  47. Jiang L, Qiu W, Zhou Y, Wen P, Fang L, Cao H, Zen K, He W, Zhang C, Dai C, Yang J (2013) A microRNA-30e/mitochondrial uncoupling protein 2 axis mediates TGF-beta1-induced tubular epithelial cell extracellular matrix production and kidney fibrosis. Kidney Int 84:285–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ding W, Li J, Singh J, Alif R, Vazquez-Padron RI, Gomes SA, Hare JM, Shehadeh LA (2015) miR-30e targets IGF2-regulated osteogenesis in bone marrow-derived mesenchymal stem cells, aortic smooth muscle cells, and ApoE−/− mice. Cardiovasc Res 106:131–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yoon JH, Abdelmohsen K, Srikantan S, Guo R, Yang X, Martindale JL, Gorospe M (2013) Tyrosine phosphorylation of HuR by JAK3 triggers dissociation and degradation of HuR target mRNAs. Nucleic Acids Res 42:1196–1208

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are grateful to Prof. Wengong Wang for providing the pcDNA-flag-HuR plasmid. This work was supported by grants from the National Natural and Science Foundation of China (31301154, 81430013), Beijing Natural Science Foundation (5144025), and the Project of Construction of Innovative Teams and Teacher Career Development for Universities and Colleges Under Beijing Municipality (IDHT20150502).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liying Li.

Ethics declarations

Conflict of interest

The authors indicate no potential conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, N., Ge, J., Xiu, L. et al. HuR mediates motility of human bone marrow-derived mesenchymal stem cells triggered by sphingosine 1-phosphate in liver fibrosis. J Mol Med 95, 69–82 (2017). https://doi.org/10.1007/s00109-016-1460-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-016-1460-x

Keywords

Navigation